python实战(七)——基于LangChain的RAG实践

该文章已生成可运行项目,

一、任务目标

        基于之前的RAG实战,相信大家对RAG的实现已经有了一定的了解了。这篇文章将使用LangChain作为辅助,实现一个高效、便于维护的RAG程序。

二、什么是LangChain

        LangChain是一个用于构建大模型应用程序的开源框架,它内置了多个模块化组件。通过这些组件,我们能够快速且便捷地搭建一个强大的大模型应用程序。首先,我们来看一下如何通过LangChain来调用大语言模型:

from langchain_community.chat_models.openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
import os


API_SECRET_KEY = "your api key"
BASE_URL = "your api base"
os.environ["OPENAI_API_KEY"] = API_SECRET_KEY
os.environ["OPENAI_API_BASE"] = BASE_URL


# 这里的temperature参数控制答案生成的随机性,0表示按照概率最大的结果生成,也就是最稳定
# 如果温度设置为1则表示生成极富随机性的结果
# 由于我们没有指定调用哪个openai模型,默认会是gpt-3.5-turbo
chat = ChatOpenAI(temperature=0.0)

# 定义template字符串,这里不需要使用f字符串来赋值
template = """请将下面的中文文本翻译为{language}。\
文本:'''{text}'''
"""

# 将template字符串转换为langchain模板,这时候会自动识别prompt模板需要的参数,即{}中的内容
prompt_template = ChatPromptTemplate.from_template(template)

customer_language = '英文'
customer_text = '你好,我来自中国。'

# 传入相应字符串生成符合大模型输入要求的prompt
customer_messages = prompt_template.format_messages(language=customer_language, text=customer_text)
print(customer_messages[0])

# 调用大语言模型
customer_response = chat.invoke(customer_messages, temperature=0.0)
print(customer_response.content)

本文章已经生成可运行项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值