Is It A Tree?

本文介绍了一个使用并查集实现的算法,用于判断一组节点连接是否构成树结构。通过输入节点间的连接关系,程序能准确判断出给定的集合是否符合树的定义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                                                                  Is It A Tree?

原题链接 http://poj.org/problem?id=1308

A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties. 

There is exactly one node, called the root, to which no directed edges point. 
Every node except the root has exactly one edge pointing to it. 
There is a unique sequence of directed edges from the root to each node. 
For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not. 


In this problem you will be given several descriptions of collections of nodes connected by directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes Each edge description will consist of a pair of integers; the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero.

Output

For each test case display the line "Case k is a tree." or the line "Case k is not a tree.", where k corresponds to the test case number (they are sequentially numbered starting with 1).

Sample Input

6 8  5 3  5 2  6 4
5 6  0 0

8 1  7 3  6 2  8 9  7 5
7 4  7 8  7 6  0 0

3 8  6 8  6 4
5 3  5 6  5 2  0 0
-1 -1

Sample Output

Case 1 is a tree.
Case 2 is a tree.
Case 3 is not a tree.

并查集,但需要注意空树是树,自环不是树 ,森林不是树 ,构成环路的不是树,其实有一个更简便的方法,判断点与边是否满足点数-1=边数满足就是树,否者就不是。

#include<stdio.h>

int dp[110000],book[110000];

int findx(int x)
{
    int r=x;
    while(dp[r]!=r)
    {
        r=dp[r];
    }
    return r;
}

bool merge(int x,int y)
{
    int fx,fy;
    fx=findx(x);
    fy=findx(y);
    if(fx!=fy)
    {
        dp[fx]=fy;
        return 1;
    }
    else
    {
        return 0;
    }
}

int main()
{
    int a,b,flag,num,k=0;
    while(~scanf("%d%d",&a,&b))
    {
        k++;
        if(a==-1&&b==-1)
        {
            break;
        }
        flag=1;
        num=0;
        if(a==0&&b==0)
        {
            printf("Case %d is a tree.\n",k);
            continue;
        }
        for(int i=0; i<100010; i++)
        {
            dp[i]=i;
            book[i]=0;
        }
        int min=99999999,max=-1;
        while(a||b)
        {
            if(a>max) max=a;
            if(b>max) max=b;
            if(a<min) min=a;
            if(b<min) min=b;
            book[a]=1;
            book[b]=1;
            if(merge(a,b)==0)
            {
                flag=0;
            }
            scanf("%d%d",&a,&b);
        }
        if(flag==0)
        {
            printf("Case %d is not a tree.\n",k);
        }
        else
        {
            for(int i=min; i<=max; i++)
            {
                if(book[i]&&dp[i]==i)
                {
                    num++;
                }
            }
            if(num==1)
            {
                printf("Case %d is a tree.\n",k);
            }
            else
            {
                printf("Case %d is not a tree.\n",k);
            }
        }
    }
    return 0;
}

 

下面是用C语言实现的代码,判断一棵二叉树是否为完全二叉树。 ```c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> typedef struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; } TreeNode; typedef struct Queue { TreeNode **data; int front; int rear; int size; } Queue; Queue *createQueue(int size) { Queue *q = (Queue *)malloc(sizeof(Queue)); q->data = (TreeNode **)malloc(sizeof(TreeNode *) * size); q->front = q->rear = 0; q->size = size; return q; } bool isEmpty(Queue *q) { return q->front == q->rear; } bool isFull(Queue *q) { return (q->rear + 1) % q->size == q->front; } void enqueue(Queue *q, TreeNode *node) { if (isFull(q)) { return; } q->data[q->rear] = node; q->rear = (q->rear + 1) % q->size; } TreeNode *dequeue(Queue *q) { if (isEmpty(q)) { return NULL; } TreeNode *node = q->data[q->front]; q->front = (q->front + 1) % q->size; return node; } bool isCompleteTree(TreeNode* root) { if (root == NULL) { return true; } Queue *q = createQueue(1000); bool flag = false; enqueue(q, root); while (!isEmpty(q)) { TreeNode *node = dequeue(q); if (node->left) { if (flag) { return false; } enqueue(q, node->left); } else { flag = true; } if (node->right) { if (flag) { return false; } enqueue(q, node->right); } else { flag = true; } } return true; } int main() { TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode)); root->val = 1; root->left = (TreeNode *)malloc(sizeof(TreeNode)); root->left->val = 2; root->right = (TreeNode *)malloc(sizeof(TreeNode)); root->right->val = 3; root->left->left = (TreeNode *)malloc(sizeof(TreeNode)); root->left->left->val = 4; root->left->right = (TreeNode *)malloc(sizeof(TreeNode)); root->left->right->val = 5; root->right->left = (TreeNode *)malloc(sizeof(TreeNode)); root->right->left->val = 6; printf("%s\n", isCompleteTree(root) ? "true" : "false"); return 0; } ``` 代码中使用了队列来存储二叉树中的节点,判断是否为完全二叉树的方法是,从根节点开始,每层的节点必须都存在,否则后面的节点都必须是叶子节点才满足完全二叉树的定义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值