代码随想录算法训练营第20天 |● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树


前言

617,98只掌握了递归法

654.最大二叉树

在这里插入图片描述
在这里插入图片描述

思路

注意事项【本题简单,就这两个重要些儿】

  1. 使用前序遍历
  2. 可以在传入的时候传入数组和左右index而不是每次都复值一个数组的方式来节省空间开销。

老师在讲的思路和我下面有一点出入:
4. 他进入递归里面的nums不为空,长度大于等于1【题目给出的】,所以在切割左右数组的时候会加了限定index>0或者index<size-1,保证nums里面有元素才递归,我的方法会有空的情况【反正没错】。

方法一 递归法

下面是自己写的代码,一遍过,和昨天的一样思路,还比昨天的简单

class Solution(object):
 
    def constructMaximumBinaryTree(self, nums):
        """
        :type nums: List[int]
        :rtype: TreeNode
        """
        if not nums: return None
        max_val = max(nums) 
        max_index = nums.index(max_val)
        node = TreeNode(val=max_val)
        #返回条件 叶子节点;本题中因为有了上面的None的情况,所以可以省略下面这一句判断
        if len(nums) == 1: return node
        # 单层递归逻辑
        #拆分左右
        left_tree = nums[:max_index]
        right_tree = nums[max_index+1:]
        node.left = self.constructMaximumBinaryTree(left_tree)
        node.right = self.constructMaximumBinaryTree(right_tree)
        return node

方法一2 老师的+优化递归法

思路:三步走

  1. 返回node
  2. 在这里插入图片描述
  3. 有3步
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

优化:没有必要每次传入的时候都是复值的一个新的小数组,只需要传入index的起止就可以了;

class Solution:
    def traversal(self, nums: List[int], left: int, right: int) -> TreeNode:
        if left >= right:
            return None
        maxValueIndex = left
        for i in range(left + 1, right):#不适用max和.index函数的写法。
            if nums[i] > nums[maxValueIndex]:
                maxValueIndex = i
        root = TreeNode(nums[maxValueIndex])
        root.left = self.traversal(nums, left, maxValueIndex)
        root.right = self.traversal(nums, maxValueIndex + 1, right)
        return root

    def constructMaximumBinaryTree(self, nums: List[int]) -> TreeNode:
        return self.traversal(nums, 0, len(nums))

617.合并二叉树

在这里插入图片描述
💌这是十分经典的二叉树题目;可以想想之前做过的对称二叉树;

思路

优先掌握递归法
总体思路:两棵树同步遍历+不是创建了一个新的二叉树,而是直接改的tree1;
三步递归法:

  1. 输入和返回值:输入两个tree,输出root
  2. 终止条件【💖十分巧妙】:如果t1为空,那么返回t2;如果t2为空,那就接t1
    • t1空了,肯定就是直接把后面的t2嫁接过来;当然t2为空也没有关系,那就接t2
  3. 单层逻辑:val为t1的val+t2的val;左节点为t1.left和t2.left递归之后的结果,右边也是。
  4. 补充:三种遍历顺序都是一样的

方法一 递归法

直接在t1上面处理,节省空间

class Solution(object):
    def mergeTrees(self, root1, root2):
        """
        :type root1: TreeNode
        :type root2: TreeNode
        :rtype: TreeNode
        """
        if not root1:return root2
        if not root2:return root1
        root1.val += root2.val
        root1.left = self.mergeTrees(root1.left,root2.left)
        root1.right = self.mergeTrees(root1.right,root2.right)
        return root1

方法二 迭代法

700.二叉搜索树中的搜索

在这里插入图片描述

思路

本题需要掌握递归法和迭代法,因为都很简单
在这里插入图片描述

方法一 递归法

三步走

  1. 传入root,传出一个是搜索数值对应的节点
  2. 终止条件:如果传入的为空的话,返回none;如果发现值相等target的话,也是直接返回root
  3. 单层递归条件:如果整个值小于root的值,进入左子树递归;大的话就是右子树
  4. 💘十分巧妙的点:终止条件里面两个可以合并,如果root==none,也是直接返回
class Solution(object):
    def searchBST(self, root, val):
        """
        :type root: TreeNode
        :type val: int
        :rtype: TreeNode
        """
        if not root or root.val == val: return root
        if root.val < val: result = self.searchBST(root.right)
        if root.val > val: result = self.searchBST(root.left)
        return result

方法二 迭代法

因为二叉搜索树的特性,所以很简单

class Solution:
    def searchBST(self, root: TreeNode, val: int) -> TreeNode:
        while root:
            if val < root.val: root = root.left
            elif val > root.val: root = root.right
            else: return root
        return None

98.验证二叉搜索树

## 题目
注意:二叉搜索树是不可以有重复的

思路

总体思路:使用中序遍历(前中后),那么遍历过程中的元素应该是单调递增的。

方法一 使用数组

方法一:定义一个全局变量list,遍历一次append一次,如果是递增数组就是对的
在这里插入图片描述

class Solution(object):
    def __init__(self):
        self.vec = []
    def traversal(self,root):
        if not root: return True
        self.traversal(root.left)
        self.vec.append(root.val)
        self.traversal(root.right)

    def isValidBST(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        if not root: return True
        self.traversal(root)
        for i in range(1,len(self.vec)):
            if self.vec[i-1] >= self.vec[i]:
                return False

        return True

方法二 不使用数组

方法二:不额外申请数组占据空间的方法,遍历的过程中直接比较。
陷阱
陷阱1: 不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了;会出现下面的反面情况
在这里插入图片描述
陷阱2:
在这里插入图片描述
递归三部曲

  1. 定义全局变量记录遍历过程中的最大值,输入为root输出为bool
  2. 终止条件:如果为空节点,也是满足的。
  3. 单层遍历的逻辑:前序递归;一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false;后续递归–>最后返回的应该是前序和后序遍历的结果

代码注意点:

  1. python里面设定极小值的代码为 self.maxVal = float(‘-inf’)
  2. 可以写>=的,,,,
  3. 单层中结合左右中的结果来返回。别忘了返回左右的判断结果
class Solution:
    def __init__(self):
        self.maxVal = float('-inf')  # 因为后台测试数据中有int最小值

    def isValidBST(self, root):
        if root is None:
            return True

        left = self.isValidBST(root.left)
        # 中序遍历,验证遍历的元素是不是从小到大
        if self.maxVal < root.val:
            self.maxVal = root.val
        else:
            return False
        right = self.isValidBST(root.right)

        return left and right

方法二 使用双指针优化

为了解决方法二中的担忧:如果输入的就是int的最小值怎么办,如何给maxvalue初始化呢?使用双指针法来优化
定义一个全局指针pre,单层的逻辑修改为if (pre != NULL && pre->val >= root->val) return false;pre = root; // 记录前一个节点

class Solution(object):
    def __init__(self):
        self.pre = None 

    def isValidBST(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        if not root: return True
        left = self.isValidBST(root.left)
        if self.pre and self.pre.val >= root.val: return False
        self.pre = root
        right =  self.isValidBST(root.right)
        return left  and right

方法三 递归法


总结

today还是太慢了。一直在玩,实验都没有怎么做。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值