学习日志

本文介绍了深度学习的基本概念和核心特色,探讨了其通过多层次非线性表征模型从原始数据中提取高级抽象特征的方法。文章还概述了几种主要的深度学习模型,包括卷积神经网络、自编码神经网络及深度置信网络,并对比了深度学习与传统机器学习的区别。

深度学习初步了解总结

核心特色与基本定义
深度学习是机器学习的一种,使机器模仿人的思维和行动。深度学习是一种表征学习方法。把原始数据通过一些简单的可是非线性的多层次表征模型转变成为更高层次的,更加抽象的表达。通过足够多这样的转换组合,很复杂的函数也可以被学习。深度学习的核心特色是这些多层结构中的特征不是工程师手工设计的,而是通过一个通用目的的学习过程从数据中学习的。
涉及的模式与分析方法
1.基于卷积运算的神经网络系统,即卷积神经网络
2.基于多层神经元的自编码神经网络,包括自编码以及近年来受到广泛关注的稀疏编码两类
3.以多层自编码神经网络的方式进行与训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络
深度网络与传统机器学习的重要区别
传统机器学习做分类的时候需要大量的先验经验和领域知识对分类特征进行设计,但是又很难保证特征的泛化能力。而深度学习可以通过网络来拟合特征可以避免这种问题,因为深度学习通过多层结构从原始数据中得到的特征可以同时提高特征的区分选择性和特征不变形,而且可微小细节的特征进行区分
参考文献
[1]Deep Learning(深度学习)学习笔记整理系列

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值