对比损失Contrastive Loss

【时间】2-019.01.21

【题目】对比损失Contrastive Loss

PS:本文转载自Contrastive Loss

Contrastive Loss

在传统的siamese network中一般使用Contrastive Loss作为损失函数,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。

1531909-0244cbc55e300cd2.png

siamese network-孪生神经网络
contrastive loss的表达式如下:

1531909-0ecc6b2518f1afe1.png
其中d=||an-bn||2,代表两个样本的欧式距离,y为两个样本是否匹配的标签,y=1代表两个样本相似或者匹配,y=0则代表不匹配,margin为设定的阈值。
这种损失函数最初来源于Yann LeCun的Dimensionality Reduction by Learning an Invariant Mapping,主要是用在降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧不相似。

### Contrastive Loss Implementation and Usage in PyTorch Contrastive loss is a type of loss function used primarily for training neural networks to learn embeddings that capture the similarity between pairs of inputs. In particular, this loss encourages similar items (positive pairs) to have close representations while dissimilar ones (negative pairs) are pushed apart by some margin. In PyTorch, implementing contrastive loss involves defining a custom loss function or using predefined functions from libraries such as `torch.nn`. A common approach includes calculating Euclidean distance between two input vectors followed by applying hinge-like logic based on whether they belong together or not: ```python import torch from torch import nn class ContrastiveLoss(nn.Module): """ Computes the contrastive loss given pairs of images and labels indicating if pair should be similar. Args: margin (float): Margin value for separating positive/negative samples distances. Default set at 1.0 which can vary depending upon dataset specifics. Returns: Tensor containing computed mean contrastive loss over all sample pairs provided during forward pass. """ def __init__(self, margin=1.0): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2) pos_loss = (label) * torch.pow(euclidean_distance, 2).cuda() neg_loss = (1-label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2).cuda() return torch.mean(pos_loss + neg_loss) # Example usage with dummy data points loss_fn = ContrastiveLoss(margin=1.5) output1 = torch.randn((8, 128)) # batch_size x embedding_dim output2 = torch.randn_like(output1) labels = torch.randint(low=0, high=2, size=(8,)) contrastive_loss_value = loss_fn(output1, output2, labels.float()) print(f'Computed Contrastive Loss Value: {contrastive_loss_value.item()}') ``` This code snippet defines a simple yet effective way to implement contrastive loss within PyTorch models when working with paired datasets where each item has an associated binary target specifying its relationship status relative to another instance[^1]. --related questions-- 1. How does changing the margin parameter affect model performance? 2. What preprocessing steps might improve results before feeding into a network trained via contrastive loss? 3. Can you provide examples of applications benefiting most significantly from utilizing contrastive losses? 4. Are there alternative methods besides pairwise comparisons available under unsupervised learning paradigms?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值