codeforces 932e Team Work

本文介绍了一种解决特定组合数学问题的方法,通过将问题转换为物品放入箱子的方案数问题,并利用动态规划进行求解。文章给出了详细的算法思路及C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Team Work
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You have a team of N people. For a particular task, you can pick any non-empty subset of people. The cost of having x people for the task is xk.

Output the sum of costs over all non-empty subsets of people.

Input

Only line of input contains two integers N (1 ≤ N ≤ 109) representing total number of people and k (1 ≤ k ≤ 5000).

Output

Output the sum of costs for all non empty subsets modulo 109 + 7.

Examples
input
Copy
1 1
output
1
input
Copy
3 2
output
24
Note

In the first example, there is only one non-empty subset {1} with cost 11 = 1.

In the second example, there are seven non-empty subsets.

{1} with cost 12 = 1

{2} with cost 12 = 1

{1, 2} with cost 22 = 4

{3} with cost 12 = 1

{1, 3} with cost 22 = 4

{2, 3} with cost 22 = 4

{1, 2, 3} with cost 32 = 9

The total cost is 1 + 1 + 4 + 1 + 4 + 4 + 9 = 24.

题意:给定n,k,求



nr=1
Crnrk

首先这个题可以转化为现在有x种东西,放到k个箱子中的方案数。

我们定义dp[i][j]表示放到第i个箱子,放了j种东西的方案数,那么dp[i][j]=(dp[i-1][j]*j+dp[i-1][j-1]*(n-j+1))%1000000007;

最后答案就等于

min(n,k)i=1dp[k][i]×2ni

因为我们已经确定了集合中i个数字,剩下的选与不选都无所谓,就是2^(n-i)了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll n,k,dp[2][5005],cur,ans;
ll pow(ll x,ll y)
{
    ll res=1,a=x;
    for(;y;y>>=1)
    {
        if(y&1) res=res*a%1000000007;
        a=a*a%1000000007;
    }
    return res;
}
int main()
{
    cin>>n>>k;
    dp[0][0]=1;
    for(int i=1;i<=k;i++)
    {
        cur=!cur;
        for(int j=1;j<=i;j++)
            dp[cur][j]=(dp[!cur][j]*j+dp[!cur][j-1]*(n-j+1))%1000000007;
        dp[0][0]=0;
    }
    for(int i=1;i<=min(n,k);i++)
        ans=(ans+dp[cur][i]*pow(2ll,n-i)%1000000007)%1000000007;
    printf("%I64d",ans);
}














### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值