codeforces 486d Valid Sets

本文介绍了一种算法,用于解决给定一棵树后,寻找所有满足特定条件的连通子图的问题。具体条件为子图中最大节点值与最小节点值之差不大于给定值d。文章详细阐述了解决方案的思路,并提供了实现该算法的C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Valid Sets
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.

We call a set S of tree nodes valid if following conditions are satisfied:

  1. S is non-empty.
  2. S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
  3. .

Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007(109 + 7).

Input

The first line contains two space-separated integers d (0 ≤ d ≤ 2000) and n (1 ≤ n ≤ 2000).

The second line contains n space-separated positive integers a1, a2, ..., an(1 ≤ ai ≤ 2000).

Then the next n - 1 line each contain pair of integers u and v (1 ≤ u, v ≤ n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.

Output

Print the number of valid sets modulo 1000000007.

Examples
input
Copy
1 4
2 1 3 2
1 2
1 3
3 4
output
8
input
Copy
0 3
1 2 3
1 2
2 3
output
3
input
Copy
4 8
7 8 7 5 4 6 4 10
1 6
1 2
5 8
1 3
3 5
6 7
3 4
output
41
Note

In the first sample, there are exactly 8 valid sets: {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4} and {1, 3, 4}. Set {1, 2, 3, 4} is not valid, because the third condition isn't satisfied. Set {1, 4} satisfies the third condition, but conflicts with the second condition.

题意:给出一棵树,求这棵树的满足最大点与最小点之差小于d的连通子图的个数。
题解:我们首先选择一个点,把这个点当做最大值以及根,然后往下考虑。

对于一个点,要么选要么不选,选了的话就递归,不选的话他的子树的点都不选。

有可能因为选择相等的点而重复,所以我们每次都dfs权值相等的点时,只考虑编号更大的点。

代码:

#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
long long d,dp[2005],V[2005],n,u,v,ans;
vector<int>G[2005];
void dfs(int s,int fa,int rt)
{
    dp[s]=1;
    for(int i=0,to;i<G[s].size();i++)
    {
        to=G[s][i];
        if(to==fa) continue;
        dfs(to,s,rt);                          
        if((V[rt]>V[to]&&V[rt]-V[to]<=d)||(V[rt]==V[to]&&rt<to)) dp[s]=(dp[s]+dp[s]*dp[to])%1000000007; 
    }                                          
}
int main()
{
    scanf("%I64d%I64d",&d,&n);
    for(int i=1;i<=n;i++) scanf("%I64d",&V[i]);
    for(int i=1;i<n;i++)
    {
        scanf("%I64d%I64d",&u,&v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    for(int i=1;i<=n;i++)
    {                     
        memset(dp,0,sizeof(dp));
        dfs(i,-1,i);
        ans=(ans+dp[i])%1000000007;
    }
    printf("%I64d\n",ans);
}

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值