Spark-RDD详解

RDD(弹性分布式数据集)是Spark的核心概念,它是一个不可变、分区的数据集,分布在集群的内存或磁盘中。RDD具有懒计算特性,通过变换和操作执行分布式计算。可以通过cache和persist实现持久化,存储级别包括内存、磁盘和序列化等,用于提高性能和容错。在Shell中,可以进行RDD的计数和元素操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是RDD?

  • 弹性分布式数据集分布在不同集群节点的内存中
  • 可以理解成一大数组
  • 数组的每一元素是RDD的一分区
  • RDD的每一分区是一数据块
  • 一个RDD可以分布并被运算在多台计算机节点的内存及硬盘中

RDD代表了一系列数据集合分布在机群的内存中。SPARK CORE 的任务是对这些数据进行分布式计算。

RDD特性

  1. RDD数据块可以放在磁盘上也可放在内存中(取决于设置)
  2. 如出现缓存失效或丢失,RDD的分区可以重新计算刷新
  3. RDD本身是不能被修改的
  4. 但RDD可以通过API (底层采用Scala)被变换生成新的RDD

RDD的类型

  • 并行集合(Parallelized Collections):来自于分布式化的数据对象比如PYTHON 中的list 对象.比如用户自己键入的数据
  • 文件系统数据集(如 Hadoop Datasets 或文本文件.比如通过SparkContext.textFile() 读取的数据

并行化集合是通过调用SparkContext的parallelize方法,在一个已经存在的数据集合上创建的(一个Seq对象)。集合的对象将会被拷贝,创建出一个可以被并行操作的分布式数据集

RDD的计算方式

  1. 变换(Transformations) (如:map, filter)的返回值仍然是一个RDD,Transformations操作是Lazy的,也就是说变换只是一些指令集而并不会去马上执行,需要等到有Actions操作的时候才会真正计算给出结果。Lazy Evaluation。
  2. 操作(Actions) (如:count, collect),Actions操作会返回结果或把RDD数据输出到各类系统中。Actions触发Spark启动并找到最优的计算途径。返回值是非并行化的数据集合比如 PYTHON 中的list

这里写图片描述

RDD的持久化

默认情况下当使用action 在RDD上时Spark会重新计算刷新RDD.但也可以通过持久化方法cache和persist将RDD放在内存当中。这样当第二次使用 action 在RDD上时,Spark将不重新计算刷新RDD
举个栗子

path='hdfs://xxxxxxx'
rows=sc.textFile(path)
rows.persist() #or rows.cache
rows.count()  #1
rows.count()  #2

第二个 rows.count() 将不重新从文件中读取RDD

RDD的cache和persist级别

  • RDD的持久化或缓存选项是通过persist()或cache()发出的,之后如果某个操作(Action)触发该RDD的数据第一次被计算,那么计算的结果数据(也就是该RDD的数据)就会以分区的形式被缓存于计算节点的内存中;而且这些数据是可以实现容错的,如果这个RDD的某些分区数据丢失(因为节点故障),这些分区的数据可以在使用时通过世代信息(Lineage)被自动恢复
  • RDD的存储形式或存储介质是可以通过存储级别(Storage Level)被定义的。例如,将数据持久化到磁盘、将Java对象序列化之后(有利于节省空间)缓存至内存、开启复制(RDD的分区数据可以被备份到多个节点防止丢失)或者使用堆外内存(Tachyon)。persist()可以接收一个StorageLevel对象(Scala、Java、Python)用以定义存储级别,如果使用的是默认的存储级别(StorageLevel.MEMORY_ONLY),Spark提供了一个便利方法:cache()

具体级别如下图
这里写图片描述
可以通过如下命令更改级别

dataset1=dataset.persist(StorageLevel.MEMORY_ONLY)
dataset2=dataset.persist(StorageLevel.MEMORY_AND_DISK)
dataset3=dataset.persist(StorageLevel.MEMORY_ONLY_SER)
dataset4=dataset.persist(StorageLevel.MEMORY_AND_DISK_SER)
dataset5=dataset.persist(StorageLevel.DISK_ONLY)
解释
  1. 默认选项,RDD的(分区)数据直接以Java对象的形式存储于JVM的内存中,如果内存空间不足,某些分区的数据将不会被缓存,需要在使用的时候根据世代信息重新计算
  2. RDD的数据直接以Java对象的形式存储于JVM的内存中,如果内存空间不中,某些分区的数据会被存储至磁盘,使用的时候从磁盘读取
  3. RDD的数据(Java对象)序列化之后存储于JVM的内存中(一个分区的数据为内存中的一个字节数组),相比于MEMORY_ONLY能够有效节约内存空间(特别是使用一个快速序列化工具的情况下),但读取数据时需要更多的CPU开销;如果内存空间不足,处理方式与MEMORY_ONLY相同
  4. 相比于MEMORY_ONLY_SER,在内存空间不足的情况下,将序列化之后的数据存储于磁盘
  5. 仅仅使用磁盘存储RDD的数据(未经序列化)
    对应上面dataset12345

Shell方式操作RDD

count()返回RDD里元素数目

lines=sc.textFile('xxx.txt')
lines.count()

countByValue()各RDD元素在RDD中出现的次数

val = sc.parallelize([12,2,6,2,12,2])
myCount=val.countByValue()
print(myCount)

#输出结果如下
defaultdict(<class 'int'>,{2: 3, 12: 2, 6: 1})
RDD取值操作
函数作用
take(n)返回n个元素
top(n)返回前n个元素
first()返回第一个元素
clooect()返回所有元素
foreach(func)迭代所有元素进行函数操作
takeSample(withReplacement,num,[seed])随机取出num个元素
reduceByKey(func)在每一键组内进行汇总变换
groupByKey()将值放到每一相同键组内
mapValues(func)对每一对RDD键值进行函数func值变换二不改变键
sortByKey()得到以键排序的RDD
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值