UVa-11134传说中的车

本文介绍了一种将复杂问题分解为两个一维问题的算法,通过按区间右端点排序并选择未被选过的整数,解决在指定区间内选取不同整数的问题。使用C++实现,适用于算法竞赛和优化问题求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将复杂问题进行分解。行列无关,可以分开来解,分解成两个一维问题。在区间【1-n】内选择n个不同的整数,使得第i个整数在闭区间【l,r】上。
输入时对所有区间编号,按 区间右端点从小到大排序,如果右端点一样,按左端点从小到大排序。然后,每次从区间的左端点向右选,如果没有被选过就选上,继续下一个区间。如果有哪一个区间一个点都选不上,那么无解。

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; 
const int N = 5005;
struct region{
	int l,r;
	int id;
	bool operator < ( const region &rhs ) {
		return r<rhs.r||(r==rhs.r&&l<rhs.l);
	}
}; 

int n,vis[N];

bool solve( region blocks[], int ans[] ) {
	memset( vis,0,sizeof(vis) );
	for( int i=0; i<n; ++i ) {
		int j;
		for( j=blocks[i].l; j<=blocks[i].r; ++j ) {
			if( !vis[j] ) {
				ans[blocks[i].id] = j;
				vis[j] = 1;
				break; 
			}
		}
		if( j>blocks[i].r ) return false;
	}
	return true;
}
region xblock[N],yblock[N];
int ansx[N],ansy[N];

int main()
{
	//freopen("in.txt","r",stdin);
	while( scanf("%d",&n)==1&&n ) {
		for( int i=0; i<n; ++i ) {
			scanf("%d %d %d %d", &xblock[i].l,&yblock[i].l,&xblock[i].r,&yblock[i].r );
			xblock[i].id = yblock[i].id = i;
		}
		
		sort( xblock,xblock+n );
		sort( yblock,yblock+n );
		
		bool flag = solve( xblock,ansx );
		if( !flag ) {
			printf("IMPOSSIBLE\n"); continue;
		}
		
		flag = solve( yblock,ansy );
		if( !flag ) {
			printf("IMPOSSIBLE\n"); continue;
		}
		for( int i=0; i<n; ++i ) {
			printf("%d %d\n",ansx[i],ansy[i] );
		}
	}
	//fclose(stdin);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值