2013-04-22

本文探讨了在信息系统中选择使用枚举、浮点数或带类型的检查结果存储方式的问题,以及如何根据手持设备的内容补建相关表。同时,提到了团队成员在系统开发过程中的工作状态及对个人工作的描述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在纠结一个问题,关于那个检查结果是使用枚举类型呢,还是float,还是带回类型? 使用枚举明显更容易建表,很方便,便是它存入表中的值是它的id,并不方便统计;用带回又需要再添加时多次查表,好在web端不会存在过多的数据修改。

周末和同学一起商量了下这个系统的事情,仔细看了下那个手持设备里的内容,才发现还有三种设备的表还没建,抓紧时间给补上了。

其他人又出差了,整天在公司自己干自己的,不知这是好是坏。

我的电脑显卡是NVIDIA CUDA 11.6.114 driver,win10,64位的,在安装Anaconda时,有如下几个版本:Anaconda-1.4.0-Windows-x86_64.exe 241.4 MiB 2013-07-04 17:58 Anaconda-1.5.0-Linux-x86.sh 238.8 MiB 2013-07-04 18:10 Anaconda-1.5.0-Linux-x86_64.sh 306.7 MiB 2013-07-04 18:22 Anaconda-1.5.0-MacOSX-x86_64.sh 166.2 MiB 2013-07-04 18:37 Anaconda-1.5.0-Windows-x86.exe 236.0 MiB 2013-07-04 18:45 Anaconda-1.5.0-Windows-x86_64.exe 280.4 MiB 2013-07-04 18:57 Anaconda-1.5.1-MacOSX-x86_64.sh 166.2 MiB 2013-07-04 19:11 Anaconda-1.6.0-Linux-x86.sh 241.6 MiB 2013-07-04 19:19 Anaconda-1.6.0-Linux-x86_64.sh 309.5 MiB 2013-07-04 19:32 Anaconda-1.6.0-MacOSX-x86_64.sh 169.0 MiB 2013-07-04 19:47 Anaconda-1.6.0-Windows-x86.exe 244.9 MiB 2013-07-04 19:56 Anaconda-1.6.0-Windows-x86_64.exe 290.4 MiB 2013-07-04 20:09 Anaconda-1.6.1-Linux-x86.sh 247.1 MiB 2013-07-05 08:34 Anaconda-1.6.1-Linux-x86_64.sh 317.6 MiB 2013-07-05 09:20 Anaconda-1.6.1-MacOSX-x86_64.pkg 197.3 MiB 2013-07-05 10:05 Anaconda-1.6.1-MacOSX-x86_64.sh 170.0 MiB 2013-07-05 12:20 Anaconda-1.6.1-Windows-x86.exe 244.4 MiB 2013-07-05 12:29 Anaconda-1.6.1-Windows-x86_64.exe 289.9 MiB 2013-07-05 12:49 Anaconda-1.6.2-Windows-x86.exe 244.4 MiB 2013-07-10 06:19 Anaconda-1.6.2-Windows-x86_64.exe 289.9 MiB 2013-07-10 07:04 Anaconda-1.7.0-Linux-x86.sh 381.0 MiB 2013-09-20 01:04 Anaconda-1.7.0-Linux-x86_64.sh 452.6 MiB 2013-09-20 02:49 Anaconda-1.7.0-MacOSX-x86_64.pkg 256.7 MiB 2013-09-20 05:04 Anaconda-1.7.0-MacOSX-x86_64.sh 223.3 MiB 2013-09-20 11:00 Anaconda-1.7.0-Windows-x86.exe 280.6 MiB 2013-09-20 11:11 Anaconda-1.7.0-Windows-x86_64.exe,请问我应该安装哪一个?
07-24
08-04
内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值