基于STC12C5A60S2系列1T 8051单片机的厦门icman(晶尊微)触摸芯片SC09A实现一个触摸按键单击长按都增加数值另一个触摸按键单击长按都减少数值的功能

@[TOC](基于STC12C5A60S2系列1T 8051单片机的厦门icman(晶尊微)触摸芯片SC09A实现一个触摸按键单击长按都增加数值另一个触摸按键单击长按都减少数值的功能)

STC12C5A60S2系列1T 8051单片机管脚图

在这里插入图片描述在这里插入图片描述# STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置在这里插入图片描述# STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍在这里插入图片描述在这里插入图片描述

概览

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

芯片功能

在这里插入图片描述在这里插入图片描述在这里插入图片描述

应用

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

详细参数

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

通过I2C接口读取SC09A的C语言程序

在这里插入图片描述在这里插入图片描述在这里插入图片描述

触摸按键实物连接图

在这里插入图片描述

基于STC12C5A60S2系列1T 8051单片机的厦门icman(晶尊微)触摸芯片SC09A实现一个触摸按键单击长按都增加数值另一个触摸按键单击长按都减少数值的功能编程

main.c

#include "STC12C5A60S2.h"  
#include "SC09AOfI2C.h"
#include "Int0.h"
//#include "Timer0.h"
#include "Key.h"
#include "Digitron.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
 void PortModeSet()//端口模式设置函数
{
  P0M1 = 0x00;
  P0M0 = 0x00;
  P1M1 = 0x00;
  P1M0 = 0x00;
  P2M1 = 0x00;
  P2M0 = 0x00;
  P3M1 = 0x00;
  P3M0 = 0x00;
  P4M1 = 0x00;
  P4M0 = 0x00;
 }
 void main()//主函数
{
  PortModeSet();//端口模式设置函数
  Int0Init();//外部中断0初始化函数
//  Timer0Init();//定时器0的16位定时模式1用12分频定时2ms初始化函数 晶振为12MHz
//  DigitronBootDisplay();//数码管开机显示函数
  while(1)//主循环
 {
   KeyScan();//按键扫描函数 该函数放在定时器定时2ms的中断函数中扫描
   KeyScanResult();//按键扫描结果函数 
   DigitronDisplayDataSplit();//数码管显示数据分解函数
   DigitronDisplayData();//数码管显示数据函数
  }
 } 

SC09AOfI2C.c

#include "SC09AOfI2C.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
uint KeySize = 0;//定义按键号变量	
 uint SC09AReadKey()//SC09A读取按键函数
{
  uchar BitNumber,Temp,Address;//声明位码变量 临时变量 地址变量
  bit Bit_Temp;//声明位码临时变量
  Address = ADDRESS;//SC09A的器件地址和读操作结合变量赋给地址变量
  KeySize = 0xffff;//按键号变量全部拉高
  EA = 0;//屏蔽全局中断
  SDA = 0;//I2C数据输入输出端口拉低 送出START信号
  for(Temp = 0;Temp < 4;Temp++)//延时
 {
  }
  for(BitNumber = 0;BitNumber < 8;BitNumber++)//发送8位地址字节 (A[6:0]+RWB)
 {
   SCL = 0;//I2C时钟拉低
   Temp = Address & 0x80;//取出SC09A的器件地址和读操作结合变量最高位赋给临时变量
   if(Temp == 0x80)//判断临时变量是否为0x80
   SDA = 1;//I2C数据输入输出端口拉高
   else
   SDA = 0;//I2C数据输入输出端口拉低
   Address = Address << 1;//SC09A的器件地址和读操作结合变量左移一位再赋给SC09A的器件地址和读操作结合变量
   for(Temp = 0;Temp < 4;Temp++)//延时
  {
   }
   SCL = 1;//I2C时钟拉高
   for(Temp = 0;Temp < 4;Temp++)//延时
  {
		
   } 
  }
  SDA = 1;//I2C数据输入输出端口拉高 将I2C数据输入输出端口设置为输入端口
  SCL = 0;//I2C时钟拉低
  for(Temp = 0;Temp < 4;Temp++)//延时
 {
  }
  SCL = 1;//I2C时钟拉高
  for(Temp = 0;Temp < 4;Temp++)//延时
 {
  }
  Bit_Temp = SDA;//将I2C数据输入输出端口数据赋给位码临时变量
  if(Bit_Temp) //读应答回应
  ERR = 0; //应答信号没有读到 指示通信有误
  for(BitNumber = 0;BitNumber < 16;BitNumber++)//读16位按键数据字节(D[15:0])
 {
   SCL = 0;//I2C时钟拉低
   for(Temp = 0;Temp < 4;Temp++)//延时
  {
   } 
   SCL = 1;//I2C时钟拉高
   for(Temp = 0;Temp < 4;Temp++)//延时
  {
   } 
   Bit_Temp = SDA;//将I2C数据输入输出端口数据赋给位码临时变量
   if(Bit_Temp)//判断位码临时变量是否为1
  {
    KeySize = KeySize << 1;//按键号变量左移一位再赋给按键类型变量
    KeySize = KeySize | 0x01;//按键号变量取到最低位含有1的数据赋给按键号变量
   }
   else
  {
    KeySize = KeySize << 1;//按键号变量左移一位再赋给按键号变量
   }
  }
  SCL = 0;//I2C时钟拉低
  SDA = 1;//I2C数据输入输出端口拉高
  for(Temp = 0;Temp < 4;Temp++)//延时
 {
  }
  SCL = 1;//I2C时钟拉高
  for(Temp = 0;Temp < 4;Temp++)//延时
 {
  } 
  SCL = 0;//I2C时钟拉低
  SDA = 0;//发送应答信号
  for(Temp = 0;Temp < 4;Temp++)//延时
 {
  } 
  SCL = 1;//I2C时钟拉高
  for(Temp = 0;Temp < 4;Temp++)//延时
 {
 
  } 
  SDA = 1;//I2C数据输入输出端口拉高 将I2C数据输入输出端口设置为输入端口
  KeySize = KeySize^0xffff;//符号"^"表示异或运算 即值不同为1 值相同为0
  EA = 1;//全局中断使能
  return(KeySize);//返回按键号 数据位为1 说明相应按键被触摸
 }

SC09AOfI2C.h

#ifndef  _SC09AOFI2C_H
#define  _SC09AOFI2C_H
#include "stc12c5a60s2.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
#define ADDRESS 0x81//SC09A的器件地址和读操作结合指令
sbit  SDA = P1^0;//I2C数据输入输出
sbit  SCL = P1^1;//I2C时钟输入
sbit  ERR = P1^2;//通信过程有问题指示灯
extern uint KeySize;//声明按键号变量	
extern uint SC09AReadKey();//SC09A读取按键函数
#endif 

Key.c

#include "Key.h"
//#include "Timer0.h"
#include "SC09AOfI2C.h"
#include "Int0.h"
#define	uchar unsigned char	//定义无符号字符
#define	uint  unsigned int	//定义无符号整形
#define KeyPressDeshakeTime 15//自定义按键按下消抖时间为15ms	
#define KeyLongPressDelayTime 100//自定义按键长按延时时间为100ms
//uchar ClearKeyPressFlag = 0;//定义清零按键按下标志位变量为0
//uchar SetKeyFlag = 0;//定义设置按键标志位变量为0
//uchar SetKeyPressCountFlag = 1;//定义设置按键按下计数标志位变量为1
//uchar SetKeyShortPressLcokFlag = 0;//定义设置按键短按按下锁定标志位变量为0
uchar AddKeyFlag = 0;//定义增加按键标志位变量
uchar AddKeyPressLcokFlag = 0;//定义增加按键锁定标志位变量为0
uchar AddKeyShortPressLcokFlag = 0;//定义增加按键短按按下锁定标志位变量为0
uchar AddKeyLongPressLcokFlag = 0;//定义增加按键长按按下锁定标志位变量为0
uchar DecKeyFlag = 0;//定义减少按键标志位变量
uchar DecKeyPressLcokFlag = 0;//定义减少按键锁定标志位变量为0
uchar DecKeyShortPressLcokFlag = 0;//定义减少按键短按按下锁定标志位变量为0
uchar DecKeyLongPressLcokFlag = 0;//定义减少按键长按按下锁定标志位变量为0
//uchar SetKeyShortPressCount = 0;//定义设置按键短按按下计数变量为0
//uchar SetKeyShortPressFlag = 0;//定义设置按键短按按下标志位变量为0
//uchar SetKeyShortPressCountFlag = 1;//定义设置按键短按按下计数标志位变量为1
//uchar SetKeyLongPressLcokFlag = 0;//定义设置按键长按按下锁定标志位变量为0
//uchar SetKeyLongPressCount = 0;//定义设置按键长按按下计数变量为0
//uchar SetKeyLongPressFlag = 0;//定义设置按键长按按下标志位变量为0
//uint  SetKeyLongPressCountFlag = 1;//定义设置按键长按按下计数标志位变量为0
uint  KeyPressDelayTime = 0;//定义按键按下延时时间变量为0
uint  KeyLiftDelayTime = 0;//定义按键弹起延时时间变量为0
uint  KeyPressNumber = 0;//定义按键按下数值变量为0
uint  KeyType = 0;//定义按键类型变量为0
//  uint KeyScan ()//带按键返回值的按键扫描函数
  void KeyScan ()//按键扫描函数
 {  	  
   KeySize = SC09AReadKey();//SC09A读取按键函数赋给按键号变量
   if(Int0Flag == 1)//判断外部中断标志位变量是否为1
  {	
	Int0Flag = 0;//外部中断标志位变量清0
	if((KeySize == 0x1000) && (AddKeyFlag == 0))//判断是否触摸了SC09A触摸通道0与增加按键标志位变量是否为0 
   {
	 AddKeyFlag = 1;//增加按键标志位变量置1
    }
    else if((KeySize == 0x0010) && (DecKeyFlag == 0))//判断是否触摸了SC09A触摸通道8与减少按键标志位变量是否为0
   {
	 DecKeyFlag = 1;//减少按键标志位变量置1
    }	
   }

   if((AddKeyFlag == 1) && (AddKeyPressLcokFlag == 0))//增加按键按下
//   if((AddKey == 0) && (AddKeyPressLcokFlag == 0))//增加按键按下
 {	
    LED0 = 0;//增加指示灯点亮
	AddKeyFlag = 0;//增加按键标志位变量清0
	DecKeyPressLcokFlag = 1;//减少按键按下锁定标志位变量置1 防止增加按键按下时 有减少按键按下 从而实现增加减少按键互不干扰
	KeyPressDelayTime++;//按键按下延时时间变量自加
	if((AddKeyShortPressLcokFlag == 0) && (AddKeyLongPressLcokFlag == 0))//增加按键短按按下锁定标志位变量为0与增加按键长按按下锁定标志位变量为0 一是为了增加按键第1次能短按 二是为了增加按键第1次短按后 如果不松手一直按着 会激活增加按键短按锁定标志位置1 跳出增加按键短按 进入增加按键长按 三是为了增加按键长按后松手 防止进入短按 从而实现短按与长按互不干扰 
  {	 
	 if(KeyPressDelayTime > KeyPressDeshakeTime)//判断按键按下延时时间变量是否大于按键按下消抖时间
   {
      KeyPressDelayTime = 0;//按键按下延时时间变量清0 为了跳出设置按键短按延时 进入设置按键长按延时
	  AddKeyShortPressLcokFlag = 1;//增加按键短按按下锁定标志位变量置1 跳出增加按键短按 进入增加按键长按 防止增加按键长按时进入短按 从而实现短按与长按互不干扰
	 }
    }
	 if(KeyPressDelayTime > KeyLongPressDelayTime)//判断按键按下延时时间变量是否大于按键长按延时时间
   {
      KeyPressDelayTime = 0;//按键按下延时时间变量清0 重启下一步按键按下延时操作
	  AddKeyShortPressLcokFlag = 0;//增加按键短按按下锁定标志位变量置1 防止增加按键长按后松手进入短按 从而实现短按与长按互不干扰 
      AddKeyLongPressLcokFlag = 1;//增加按键长按按下锁定标志位变量置1 一是为了增加按键长按按下后松手再触发其他功能作判断依据 二是为了增加按键长按后松手 防止进入短按 从而实现短按与长按互不干扰
	  KeyType = 1;//此处是增加按键长按
	 }
  }
 
   else if((DecKeyFlag == 1) && (DecKeyPressLcokFlag == 0))//减少按键按下		
//   else if((DecKey == 0) && (DecKeyPressLcokFlag == 0))//减少按键按下
 {	 
   	LED1 = 0;//减少指示灯点亮
	DecKeyFlag = 0;//减少按键标志位变量清0
	AddKeyPressLcokFlag = 1;//增加按键按下锁定标志位变量置1 防止减少按键按下时 有增加按键按下 从而实现增加减少按键互不干扰
	KeyPressDelayTime++;//按键按下延时时间变量自加
	if((DecKeyShortPressLcokFlag == 0) && (DecKeyLongPressLcokFlag == 0))//减少按键短按按下锁定标志位变量为0与减少按键长按按下锁定标志位变量为0 一是为了减少按键第1次能短按 二是为了减少按键第1次短按后 如果不松手一直按着 会激活减少按键短按锁定标志位置1 跳出减少按键短按 进入减少按键长按 三是为了减少按键长按后松手 防止进入短按 从而实现短按与长按互不干扰 
  {	 
	 if(KeyPressDelayTime > KeyPressDeshakeTime)//判断按键按下延时时间变量是否大于按键按下消抖时间
   {
      KeyPressDelayTime = 0;//按键按下延时时间变量清0 为了跳出设置按键短按延时 进入设置按键长按延时
	  DecKeyShortPressLcokFlag = 1;//减少按键短按按下锁定标志位变量置1 跳出减少按键短按 进入减少按键长按 防止减少按键长按时进入短按 从而实现短按与长按互不干扰
	 }
    }
	 else if(KeyPressDelayTime > KeyLongPressDelayTime)//判断按键按下延时时间变量是否大于按键长按延时时间
   {
      KeyPressDelayTime = 0;//按键按下延时时间变量清0 重启下一步按键按下延时操作
	  DecKeyShortPressLcokFlag = 0;//减少按键短按按下锁定标志位变量置1 防止减少按键长按后松手进入短按 从而实现短按与长按互不干扰 
      DecKeyLongPressLcokFlag = 1;//减少按键长按按下锁定标志位变量置1 一是为了减少按键长按按下后松手再触发其他功能作判断依据 二是为了减少按键长按后松手 防止进入短按 从而实现短按与长按互不干扰
	  KeyType = 2;//此处是减少按键长按
	 }
   } 
 //以下表示减少按键弹起或没按下
   else if(DecKeyShortPressLcokFlag == 1)//表示短按过 判断减少按键短按按下锁定标志位变量是否为1 为了减少按键短按按下后松手再触发其他功能 而不受其他抖动影响
 {
   	LED1 = 1;//减少指示灯熄灭
	KeyPressDelayTime = 0;//按键按下延时时间变量清0 重启下一步按键按下延时操作
    KeyLiftDelayTime++;//按键弹起延时时间变量自加
	if(KeyLiftDelayTime > KeyPressDeshakeTime)//判断按键弹起延时时间变量是否大于按键按下消抖时间
  { 
	 KeyLiftDelayTime = 0;//按键弹起延时时间变量清0 重启下一步按键弹起延时操作
	 DecKeyShortPressLcokFlag = 0;//减少按键短按按下锁定标志位变量置0 为了重启下一步减少按键短按按下操作
	 DecKeyLongPressLcokFlag = 0;//减少按键长按按下锁定标志位变量置0 为了重启下一步减少按键长按按下操作
	 KeyType = 2;//此处是减少按键短按 对于按键计数或按键类型触发操作 建议要放在按键弹起后再计数 此处就是
     AddKeyPressLcokFlag = 0;//解除增加按键按下锁定标志位	
	}
   }
  //以下表示减少按键弹起或没按下
   else if(DecKeyLongPressLcokFlag == 1)//表示长按过 判断减少按键长按按下锁定标志位变量是否为1 为了减少按键长按按下后松手再触发其他功能 而不受其他抖动影响
 {
    LED1 = 1;//减少指示灯熄灭
    KeyPressDelayTime = 0;//按键按下延时时间变量清0 重启下一步按键按下延时操作
    KeyLiftDelayTime++;//按键弹起延时时间变量自加
    if(KeyLiftDelayTime > KeyPressDeshakeTime)//判断按键弹起延时时间变量是否大于按键按下消抖时间
  { 
	 KeyLiftDelayTime = 0;//按键弹起延时时间变量清0 重启下一步按键弹起延时操作
	 DecKeyLongPressLcokFlag = 0;//减少按键长按按下锁定标志位变量置0 为了重启下一步减少按键长按按下操作
	 DecKeyShortPressLcokFlag = 0;//减少按键短按按下锁定标志位变量置0 为了重启下一步减少按键短按按下操作
     AddKeyPressLcokFlag = 0;//解除增加按键按下锁定标志位	
   }
  }

 
   else//增加按键弹起或没按下 
 {
    LED0 = 1;//增加指示灯熄灭
	KeyPressDelayTime = 0;//按键按下延时时间变量清0 重启下一步按键按下延时操作
    if(AddKeyShortPressLcokFlag == 1)//表示短按过 判断增加按键短按按下锁定标志位变量是否为1 为了增加按键短按按下后松手再触发其他功能 而不受其他抖动影响
  {
	 KeyLiftDelayTime++;//按键弹起延时时间变量自加
	 if(KeyLiftDelayTime > KeyPressDeshakeTime)//判断按键弹起延时时间变量是否大于按键按下消抖时间
   { 
	  KeyLiftDelayTime = 0;//按键弹起延时时间变量清0 重启下一步按键弹起延时操作
	  AddKeyShortPressLcokFlag = 0;//增加按键短按按下锁定标志位变量置0 为了重启下一步增加按键短按按下操作
	  AddKeyLongPressLcokFlag = 0;//增加按键长按按下锁定标志位变量置0 为了重启下一步增加按键长按按下操作
	  KeyType = 1;//此处是增加按键短按 对于按键计数或按键类型触发操作 建议要放在按键弹起后再计数 此处就是
	  DecKeyPressLcokFlag = 0;//解除减少按键按下锁定标志位	
	 }
	}
    if(AddKeyLongPressLcokFlag == 1)//表示长按过 判断增加按键长按按下锁定标志位变量是否为1 为了增加按键长按按下后松手再触发其他功能 而不受其他抖动影响
  {
	 KeyLiftDelayTime++;//按键弹起延时时间变量自加
	 if(KeyLiftDelayTime > KeyPressDeshakeTime)//判断按键弹起延时时间变量是否大于按键按下消抖时间
   { 
	  KeyLiftDelayTime = 0;//按键弹起延时时间变量清0 重启下一步按键弹起延时操作
	  AddKeyLongPressLcokFlag = 0;//增加按键长按按下锁定标志位变量置0 为了重启下一步增加按键长按按下操作
	  AddKeyShortPressLcokFlag = 0;//增加按键短按按下锁定标志位变量置0 为了重启下一步增加按键短按按下操作
	  DecKeyPressLcokFlag = 0;//解除减少按键按下锁定标志位		 
	 }
	}
   }
    
  } 
  void KeyScanResult()//按键扫描结果函数
{
   switch(KeyType)//按键类型筛选位
 {
	case 1 ://单击或连击增加触发位
		    KeyPressNumber++;//按键按下数值自加
            if(KeyPressNumber > 9999)//如果按键按下数值大于9999
           {
             KeyPressNumber = 0;//按键按下数值清0
            }
            KeyType = 0;//按键类型清0
            break;//跳出
    case 2 ://单击或连击减少触发位
            KeyPressNumber--;//按键按下数值自减
            if(KeyPressNumber == 0 || KeyPressNumber == 65535)//如果按键按下数值等于0或65535
           {
             KeyPressNumber = 0;//按键按下数值置0
            }
			KeyType = 0;//按键类型清0
            break;//跳出
//	  case 3 ://长按触发位
//            KeyPressNumber++;//按键按下数值自加
//            if(KeyPressNumber > 9999)//如果按键按下数值大于9999
//          {
//             KeyPressNumber = 0;//按键按下数值清0
//           }
//            KeyType = 0;//按键类型清0
//            break;//跳出
    default:break;//跳出
  }
 }

Key.h

#ifndef  _KEY_H
#define  _KEY_H
#include "STC12C5A60S2.h"
#define	uchar unsigned char	//定义无符号字符
#define	uint  unsigned int	//定义无符号整形
sbit  LED0 = P1^3;//增加指示灯
sbit  LED1 = P1^4;//减少指示灯
//sbit  LED2 = P1^5;//指示灯
//sbit  LED3 = P1^6;//指示灯
//sbit AddKey = P3^4;//增加按键
//sbit DecKey = P3^5;//减少按键
//sbit SetKey = P3^6;//设置按键
//sbit ClearKey = P3^7;//复位按键
//extern uchar SetKeyFlag;//声明设置按键标志位变量
//extern uchar SetKeyShortPressCountFlag;//声明设置按键短按按下计数标志位变量
//extern uchar SetKeyShortPressLcokFlag;//声明设置按键短按按下锁定标志位变量
extern uchar AddKeyFlag;//声明增加按键标志位变量
extern uchar AddKeyPressLcokFlag;//声明增加按键锁定标志位变量
extern uchar AddKeyShortPressLcokFlag;//声明增加按键短按按下锁定标志位变量
extern uchar AddKeyLongPressLcokFlag;//声明增加按键长按按下锁定标志位变量
extern uchar DecKeyFlag;//声明减少按键标志位变量
extern uchar DecKeyPressLcokFlag;//声明减少按键锁定标志位变量
extern uchar DecKeyShortPressLcokFlag;//声明减少按键短按按下锁定标志位变量
extern uchar DecKeyLongPressLcokFlag;//声明减少按键长按按下锁定标志位变量
//extern uchar SetKeyShortPressCount;//声明设置按键短按按下计数变量
//extern uchar SetKeyShortPressFlag;//声明设置按键短按按下标志位变量置
//extern uchar SetKeyShortPressCountFlag;//声明设置按键短按按下计数标志位变量
//extern uchar SetKeyLongPressLcokFlag;//声明设置按键长按按下锁定标志位变量
//extern uchar SetKeyLongPressCount;//声明设置按键长按按下计数变量
//extern uchar SetKeyLongPressFlag;//声明设置按键长按按下标志位变量
//extern uint  SetKeyLongPressCountFlag;//声明设置按键长按按下计数标志位变量
extern uint KeyPressDelayTime;//声明按键按下延时时间变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uint  KeyLiftDelayTime;//声明按键弹起延时时间变量
extern uint  KeyPressNumber;//声明按键按下数值变量
extern uint  KeyType;//声明按键类型变量
void KeyScan ();//按键扫描函数
//void AddKeyShortLongPressScan ();//增加按键短按长按扫描函数
//void DecKeyShortLongPressScan ();//减少按键短按长按扫描函数
//extern uint KeyScan ();//带有按键返回值的按键扫描函数
void KeyScanResult();//按键扫描结果函数
#endif 

Digitron.c

#include "Digitron.h"
#include "Key.h"
//#include "Timer0.h" 
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
//uchar code DigitronBitCodeArray[] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};//定义八位共阴数码管位码数组变量 为什么不是{0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f} 这才是定义八位共阴数码管位码数组变量 不对吗? 在不使用NPN三极管驱动 用单片机端口直接连接驱动 位码数组是对的 但数码管亮度不够 因此使用了NPN型三极管(比如S8050)来驱动共阴数码管位选 NPN型三极管(比如S8550)基极输入高电平才能导通 解释:共阴数码管 阴极是公共端 对应位选 低电平选通 阳极是显示端 对应段选 高电平选通 由于共阴数码管阴极公共端接单片机来驱动共阴数码管阳极显示端 共阴数码管的亮度会比较低 需要借助NPN型三极管的集电极连接共阴数码管阴极公共端 而NPN型三极管的基电极串个限流电阻连接单片机端口 通过单片机端口输出高电平到NPN型三极管的基电极 从而导通NPN型三极管 放大流过共阴数码管的电流 这样共阴数码管的亮度才会比较亮    
//uchar code DigitronSegmentCodeArray[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x40,0x00};//定义共阴数码管显示0到F数据及符号“—”及熄灭数组变量
//uchar code DigitronSegmentCodeOfPointArray[] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef,0xf7,0xfc,0xb9,0xde,0xf9,0xf1,0x40,0x00};//定义带小数点共阴数码管显示0.到F.数据及符号“—”及熄灭数组变量
uchar code DigitronBitCodeArray[] = {0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//定义八位共阳数码管位码数组变量 为什么不是{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80} 这才是定义八位共阳数码管位码数组变量 不对吗? 在不使用PNP三极管驱动 用单片机端口直接连接驱动 位码数组是对的 但数码管亮度不够 因此使用了PNP型三极管(比如S8550)来驱动共阳数码管位选 PNP型三极管(比如S8550)基极输入低电平才能导通 解释:共阳数码管 阳极是公共端 对应位选 高电平选通 阴极是显示端 对应段选 低电平选通 由于共阳数码管阳极公共端接单片机来驱动共阳数码管阴极显示端 共阳数码管的亮度会比较低 需要借助PNP型三极管的集电极连接共阳数码管阳极公共端 而PNP型三极管的基电极串个限流电阻连接单片机端口 通过单片机端口输出低电平到PNP型三极管的基电极 从而导通PNP型三极管 由外接电源来驱动共阳数码管 这样共阳数码管的亮度才会比较亮    
uchar code DigitronSegmentCodeArray[] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xbf,0xff};//定义共阳数码管显示0到F数据及符号“—”及熄灭数组变量
//uchar code DigitronSegmentCodeOfPointArray[] = {0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,0x08,0x03,0x46,0x21,0x06,0x0e,0xbf,0xff};//定义带小数点共阳数码管显示0.到F.数据及符号“—”及熄灭数组变量
uchar DigitronCacheDataArray[] = {0,0,0,0};//定义共阳数码管缓存数据数组变量
uchar DigitronBootTimerFlag = 1;//定义共阳数码管开机时间标志位变量 
uint  DigitronBootTimer = 0;//定义数码管开机时间变量
//extern uchar Data;//取用外部定义的数据变量
//extern uint KeyPressNumber;//如果在Key.c文件下已经定义按键按下数值变量KeyPressNumber 则以此语句来引用Key.c文件下的按键按下数值变量KeyPressNumber 否则先在Key.c文件下定义按键按下数值变量KeyPressNumber 接着在Key.h文件下的用extern关键字声明按键按下数值变量KeyPressNumber 最后通过在其他.c文件下#include "Key.h" 就可以引用在Key.c文件下已经定义的按键按下数值变量KeyPressNumber
//  void DigitronBootDisplay()//数码管开机显示函数
//{
//   do
//  {
    //if(DigitronBootTimer == 500 )//如果数码管开机时间等于1s
//    LED7 = ~ LED7;//LED灯亮灭更新
//   }while(DigitronBootTimer <= 500);//当数码管开机时间小于5s
//   DigitronBootTimerFlag = 0;//数码管开机时间标志位清0
//   LED7 = 1;//LED灯熄灭
//  }
  void DigitronDisplayDataSplit()//数码管显示数据分解函数
{
   DigitronCacheDataArray[0] = KeyPressNumber / 1000;//数码管千位数据显示
   DigitronCacheDataArray[1] = KeyPressNumber / 100 % 10;//数码管百位数据显示
   DigitronCacheDataArray[2] = KeyPressNumber / 10 % 10;//数码管十位数据显示
   DigitronCacheDataArray[3] = KeyPressNumber % 10;//数码管个位数据显示
	 
//	 DigitronCacheDataArray[0] = Data / 1000;//数码管千位数据显示
//   DigitronCacheDataArray[1] = Data / 100 % 10;//数码管百位数据显示
//   DigitronCacheDataArray[2] = Data / 10 % 10;//数码管十位数据显示
//   DigitronCacheDataArray[3] = Data % 10;//数码管个位数据显示
  if(KeyPressNumber < 1000)//如果累积时间变量小于1000
 {
   DigitronCacheDataArray[0] = 17;//数码管千位数据不显示
  }
  else
 {
   DigitronCacheDataArray[0] = KeyPressNumber / 1000;//数码管千位数据显示
  }
  if(KeyPressNumber < 100)//如果累积时间变量小于100
 {
   DigitronCacheDataArray[1] = 17;//数码管百位数据不显示
  }
  else
 {
   DigitronCacheDataArray[1] = KeyPressNumber / 100 % 10;//数码管百位数据显示
  }
  if(KeyPressNumber < 10)//如果累积时间变量小于10
 {
   DigitronCacheDataArray[2] = 17;//数码管十位数据不显示
  }
  else
 {
   DigitronCacheDataArray[2] = KeyPressNumber / 10 % 10;//数码管十位数据显示
  }
  DigitronCacheDataArray[3] = KeyPressNumber % 10;//数码管个位数据显示
 }
  void DigitronDisplayData()//数码管显示数据函数  
{  
   static uchar i = 0;//定义静态数码管管位变化变量
   DigitronSegmentCode = 0xff;//数码管段码消影
   DigitronBitCode = 0xff;//数码管位码消影
   switch(i)//数码管管位变化筛选
 {
    case 0 ://数码管千位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode DigitronSegmentCodeArray[DigitronCacheDataArray[0]];//数码管千位的段码显示
            DigitronBitCode = DigitronBitCodeArray[0];//数码管千位码显示
            i++;//数码管管位变化自加1
            break;//跳出
    case 1 ://数码管百位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[1]];//数码管百位的段码显示
            DigitronBitCode = DigitronBitCodeArray[1];//数码管百位码显示
            i++;//数码管管位变化自加1
            break;//跳出 
    case 2 ://数码管十位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[2]];//数码管十位的段码显示
            DigitronBitCode = DigitronBitCodeArray[2];//数码管十位码显示
            i++;//数码管管位变化自加1
            break;//跳出
    case 3 ://数码管个位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[3]];//数码管个位的段码显示
            DigitronBitCode = DigitronBitCodeArray[3];//数码管个位码显示
            i = 0;//数码管管位变化清0
            break;//跳出
    default:break;//跳出
   }
  }

Digitron.h

#ifndef  _DIGITRON_H
#define  _DIGITRON_H
#include "STC12C5A60S2.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
#define DigitronSegmentCode P0//自定义共阳数码管段码端口为单片机P0组引脚
#define DigitronBitCode P2//自定义共阳数码管位码端口为单片机P2组引脚
//sbit LED7 = P1^7;//位定义LED灯为单片机P1.7脚
extern uchar code DigitronBitCodeArray[];//声明八位共阳数码管位码数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar code DigitronSegmentCodeArray[];//声明共阳数码管显示0到F数据及符号“—”及熄灭数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar DigitronCacheDataArray[];//声明共阳数码管缓存数据数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar DigitronBootTimerFlag;//声明共阳数码管开机时间标志位变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uint DigitronBootTimer;//声明数码管开机时间变量 可被其他.c文件通过#include "其他.h"引用该变量
//extern uint KeyPressNumber;//声明按键按下数值变量 可被其他.c文件通过#include "其他.h"引用该变量
//void DigitronBootDisplay();//声明数码管开机显示函数
void DigitronDisplayDataSplit();//声明数码管显示数据分解函数
void DigitronDisplayData();//声明数码管显示数据函数
#endif 

Int0.c

#include "Int0.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
uchar Int0Flag = 0;//定义外部中断0标志位变量
 void Int0Init()//外部中断0初始化函数
{ 
  IT0 = 0;//设置Int0中断方式低电平中断
  EX0 = 1;//设置Int0中断使能
 }
 void Int0(void) interrupt 0//外部中断0中断函数 用一个按键连接单片机外部中断0引脚P3.2来按下弹起触发外部中断0
{ 
  Int0Flag = 1;//外部中断0标志位变量置1 
 }

Int0.h

#ifndef  _INT0_H
#define  _INT0_H
#include "STC12C5A60S2.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
extern uchar Int0Flag;//声明外部中断0标志位变量
void Int0Init();//外部中断0初始化函数
#endif

下面的定时器程序不用
/****
Timer0.c

#include "Timer0.h"
#include "Key.h"
#include "Digitron.h"
/*****关于通过特殊功能寄存器AUXR设定定时器/计数器模式为1T或12T模式不需分频或需12分频8051系列单片机定时器初值(定时计数初值)计算的知识点*****/
  /****
  时钟周期(又称振荡周期):单片机晶振频率的倒数 例:单片机晶振频率12MHz 则时钟周期=[1/(12*10^6)Hz]s=0.000000083s=0.000083ms=0.083us
  机器周期:单片机执行一条指令过程中需要完成一个基本操作(如:取指、译码、执行等基本操作)所需的时间 8051系列单片机的一个机器周期由6个S周期(状态周期)组成 一个时钟周期定义为一个节拍(用P表示) 二个节拍定义为一个状态周期(用S表示) 那么8051单片机的机器周期由6个状态周期组成 也就是说一个机器周期=6个状态周期=12个时钟周期=[12x[1/(12*10^6)Hz]s]s=0.000001s=0.001ms=1us
  指令周期:单片机取出一条指令且执行完这条指令所需的时间
  以上三者间的关系:指令周期>机器周期>时钟周期
  一、以下是8051单片机定时器用12分频计算定时器初值的一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):
   0、计算nT单片机机器周期T公式:T=n*(1/晶振频率)=几us
   1、一个机器周期=12个时钟周期=12乘以单片机晶振频率的倒数=12*[1/(12*10^6)Hz]s=0.000001s=0.001ms=1us
   2、定时时间=定时计数*一个机器周期 1ms=定时计数*1us 定时计数=1ms/1us=1000us/1us=1000次
   3、定时器初值(定时计数初值)=2^n-定时计数 n为几位定时器 此处n=16 则定时器初值(定时计数初值)=2^16-1000=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256 低八位放TL0=0x18或(65536-64536)%256
  二、以下是8051单片机定时器用12分频或不分频计算定时器初值的另外一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):
   1、综合公式:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/12/1KHz)=2^16-(12*10^6)Hz/12/1000Hz)=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256或Value >> 8 低八位放TL0=0x18或(65536-64536)%256或=Value 
   2、TH0 = Value >> 8;TL0 = Value;该两句代码解释如下:
  (1)、TH0 = Value >> 8相当于TH0 = (65536-10000)/256=55536/256=216.9375 分析:65536-10000=55536转化成二进制为11011000 11110000 55536/256=216.9375转化成二进制为11011000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000右移8位就可以得到55536/256=216.9375的二进制数11011000
  (2)、TL0 = Value相当于TL0 = (65536-时器初值的另外一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):
 (一)、以下是8051单片机定时器用12分频计算定时器初值:
     定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲(相当于定时1ms) 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/12/1KHz)=2^16-(12*10^6)Hz/12/1000Hz)=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256或Value >> 8 低八位放TL0=0x18或(65536-64536)%256或=Value 
 (二)、以下是8051单片机定时器不用分频计算定时器初值:
     定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲(相当于定时1ms) 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/1/1KHz)=2^16-(12*10^6)Hz/1/1000Hz)=65536-12000=53536 把53536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xd1或(65536-53536)/256或Value >> 8 低八位放TL0=0x20或(65536-53536)%256或=Value
 (三)、TH0 = Value >> 8;TL0 = Value;该两句代码解释如下:
     1、TH0 = Value >> 8相当于TH0 = (65536-10000)/256=55536/256=216.9375 分析:65536-10000=55536转化成二进制为11011000 11110000 55536/256=216.9375转化成二进制为11011000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000右移8位就可以得到55536/256=216.9375的二进制数11011000
     2、TL0 = Value相当于TL0 = (65536-10000)%256=55536%256=240 分析:65536-10000=55536转化成二进制为11011000 11110000 55536%256=240转化成二进制为11110000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000取低8位就可以得到55536%256=240的二进制数11110000
 (四)、由定时器定时初值(定时计数初值)推导出定时器定时时间步骤如下:
     1、如果定时器定时初值(定时计数初值)是拆开成高八位和低八位赋值形式 如:TH0=0xfc TL0=0x18 先把高八位和低八位赋值组成一个十六位数据0xfc18 转化成十进制数据64536 用2^n-64536算出每秒产生的脉冲数 其中n为几位定时器 再根据公式计算定时时间 如:由公式:每秒产生的脉冲数=晶振频率/几分频/定时频率  转换成:每秒产生的脉冲数=晶振频率x定时频率/几分频 可求:定时频率=(每秒产生的脉冲数x几分频)/晶振频率 进而求出:定时时间=1/定时频率=1/[(每秒产生的脉冲数x几分频)/晶振频率]  转换成:晶振频率/(每秒产生的脉冲数x几分频)=定时时间
     2、如果定时器定时初值(定时计数初值)是十进制数据 如:64536 直接用2^n-64536算出每秒产生的脉冲数 其中n为几位定时器 再根据公式计算定时时间 如:由公式:每秒产生的脉冲数=晶振频率/几分频/定时频率  转换成:每秒产生的脉冲数=晶振频率x定时频率/几分频 可求:定时频率=(每秒产生的脉冲数x几分频)/晶振频率 进而求出:定时时间=1/定时频率=1/[(每秒产生的脉冲数x几分频)/晶振频率]  转换成:晶振频率/(每秒产生的脉冲数x几分频)=定时时间
  ****/
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
  void Timer0Init()//定时器0的16位定时模式1用12分频定时2ms初始化函数 晶振为12MHz
{
   //AUXR &= 0x7f;//设定定时器/计数器模式为12T
   TMOD &= 0xf0;//设定定时器/计数器工作模式清0
   TMOD |= 0x01;//设定定时器/计数器为定时器 工作模式为16位定时器0模式1
   TH0 = 0xf8;//设定定时器0高8位初值
   TL0 = 0x30;//设定定时器0低8位初值
   TF0 = 0;//定时器0溢出中断标志位清0
   ET0 = 1;//打开定时器0中断开关
   EA = 1;//打开定时器中断总开关
   TR0 = 1;//打开定时器0开关
  } 
  void Timer0() interrupt 1//定时器0的16位定时模式1用12分频定时2ms中断函数 晶振为12MHz
{
   TR0 = 0;//关定时器0开关
   if(DigitronBootTimerFlag == 1)//数码管开机时间标志位置1
 {
    DigitronBootTimer++;//数码管开机时间自加
   }
   if(DigitronBootTimerFlag == 0)//判断共阳数码管开机时间标志位是否等于0
 { 
    DigitronDisplayDataSplit();//数码管显示数据分解函数
    DigitronDisplayData();//数码管显示数据函数
//    SetKeyScan();//设置按键扫描函数 该函数放在定时器定时2ms的中断函数中扫描
	KeyScan();//按键扫描函数 该函数放在定时器定时2ms的中断函数中扫描
   }
   TH0 = 0xf8;//设定定时器0计数高8位初值
   TL0 = 0x30;//设定定时器0计数低8位初值
   TR0 = 1;//开定时器0开关
  }

Timer0.h

#ifndef  _TIMER0_H
#define  _TIMER0_H
#include "STC12C5A60S2.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
void Timer0Init();//声明定时器0初始化函数
#endif 

****/

基于STC12C5A60S2系列1T 8051单片机的厦门icman(晶尊微)触摸芯片SC09A实现一个触摸按键单击长按都增加数值另一个触摸按键单击长按都减少数值的实验现象

厦门icman(晶尊微)触摸芯片SC09A调试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值