听我说,Transformer它就是个支持向量机

 编辑 | 机器之心

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【Transformer】技术交流群

本文只做学术分享,如有侵权,联系删文

SVM is all you need,支持向量机永不过时。

Transformer 是一个支持向量机(SVM)一种新型理论在学界引发了人们的讨论。

上周末,一篇来自宾夕法尼亚大学、加州大学河滨分校的论文试图研究大模型基础 Transformer 结构的原理,其在注意力层的优化几何与将最优输入 token 与非最优 token 分开的硬边界 SVM 问题之间建立了形式等价。

在 hackernews 上作者表示,这种理论解决了 SVM 将每个输入序列中的「好」标记与「坏」token 分开的问题。该 SVM 作为一个性能优异的 token 选择器,与传统为输入分配 0-1 标签的 SVM 本质上不同。

这种理论也解释了注意力如何通过 softmax 引起稀疏性:落在 SVM 决策边界错误一侧的「坏」token 被 softmax 函数抑制,而「好」token 是那些最终具有非零 softmax 概率的 token。还值得一提的是,这个 SVM 源于 softmax 的指数性质。

论文上传到 arXiv 上面之后,人们纷纷发表意见,有人表示:AI 研究的方向真是螺旋上升,难道又要绕回去了?

7e523b84201a4a70ba51a5f8305225ae.png

绕了一圈,支持向量机还是没有过时。

自经典论文《Attention is All You Need》问世以来,Transformer 架构已为自然语言处理(NLP)领域带来了革命性进展。Transformer 中的注意力层接受一系列输入 token X,并通过计算 21183382e67f5697c376ca6cb92d4a52.png 评估 token 之间的相关性,其中 (K, Q) 是可训练的 key-query 参数,最终有效捕获远程依赖关系。

现在,一篇名为《Transformers as Support Vector Machines》的新论文在自注意力的优化几何和 hard-margin SVM 问题之间建立了一种形式等价,使用 token 对的外积线性约束将最优输入 token 与非最优 token 分开。

ca6cac98b7284713b5e03f3d04f9bc4b.png

论文链接:https://arxiv.org/pdf/2308.16898.pdf

这种形式等价建立在 Davoud Ataee Tarzanagh 等人的论文《Max-Margin Token Selection in Attention Mechanism》的基础上,它能够描述通过梯度下降进行优化的 1 层 transformer 的隐式偏差(implicit bias):

 (1) 优化由 (K, Q) 参数化的注意力层,通过消失正则化(vanishing regularization),收敛到一种 SVM 解决方案,其中最小化组合参数 543e0c7ff1445fb3c26451ca92bc2359.png 的核范数(nuclear norm)。相反,直接通过 W 进行参数化可以最小化 Frobenius 范数 SVM 目标。该论文描述了这种收敛,并强调它可以发生在局部最优方向而不是全局最优方向。 

(2) 该论文还证明了 W 参数化在适当的几何条件下梯度下降的局部 / 全局方向收敛。重要的是,过度参数化通过确保 SVM 问题的可行性和保证没有驻点(stationary points)的良性优化环境来催化全局收敛。 

(3) 虽然该研究的理论主要适用于线性预测头,但研究团队提出了一种更通用的 SVM 等价物,可以预测具有非线性头 / MLP 的 1 层 transformer 的隐式偏差。

总的来说,该研究的结果适用于一般数据集,可以扩展到交叉注意力层,并且研究结论的实际有效性已经通过彻底的数值实验得到了验证。该研究建立一种新的研究视角,将多层 transformer 看作分离和选择最佳 token 的 SVM 层次结构。

具体来说,给定长度为 T,嵌入维度为 d 的输入序列 7dd86e5245fd56a39d2a7006dd44b660.png ,该研究分析核心交叉注意力和自注意力模型: 

6a8e906d66a1aaf503630e8f92b454ff.png

其中,K、Q、V 分别是可训练的键、查询、值矩阵,be40f9540438f2e9a63edcb2b8b4b450.png;S (・) 表示 softmax 非线性,它逐行应用于 b8c0d3abcc666c03a9dae13bd26ae03b.png。该研究假设将 Z 的第一个 token(用 z 表示)用于预测。具体来说,给定一个训练数据集 495858192dca9938340115012b4e2644.pngc9f65afa4fb620b6c8c17f0614fd74fc.png48dc0a25325b742e7168a1b5244f94a6.png,该研究使用递减损失函数 97614c826d81528bf2d64fd249a823ff.png 进行最小化:

8bdc5236a6b0784ec8590a4c71417c6e.png

这里,h (・) : 14436b44a996c063cc057f962477939c.png 是包含值权重 V 的预测头。在这种表述中,模型 f (・) 精确地表示了一个单层 transformer,其中注意力层之后是一个 MLP。作者通过设置 afd573efbf2fe5167f8b148a0d39932f.png 来恢复 (2) 中的自注意力,其中 x_i 表示序列 X_i 的第一个 token。由于 softmax 运算的非线性性质,它给优化带来了巨大挑战。即使预测头是固定和线性的,该问题也是非凸和非线性的。在本研究中,作者将重点放在优化注意力权重(K、Q 或 W)上,并克服这些挑战,从而建立 SVM 的基本等价性。

论文结构如下:第 2 章介绍了自注意力和优化的初步知识;第 3 章分析了自注意力的优化几何,表明注意力参数 RP 收敛到最大边际解;第 4 章和第 5 章分别介绍了全局和局部梯度下降分析,表明 key-query 变量 W 向 (Att-SVM) 的解决方案收敛;第 6 章提供了在非线性预测头和广义 SVM 等价性方面的结果;第 7 章将理论扩展到顺序预测和因果预测;第 8 章讨论了相关文献。最后,第 9 章进行总结,提出开放性问题和未来研究方向。

论文的主要内容如下:

注意力层的内隐偏差(第 2-3 章)

正则化消失的情况下优化注意力参数(K, Q),会在方向上收敛到9208589db98ac82f26e5c675de8bc8fa.png的最大边际解,其核范数目标是组合参数 372aa1e26a995e089be9763aaa6f4f0f.png。在直接用组合参数 W 对交叉注意力进行参数化的情况下,正则化路径 (RP) 定向收敛于以 Frobenius 范数为目标的(Att-SVM)解。

这是第一个正式区分 W 与(K,Q)参数化优化动态的结果,揭示了后者的低阶偏差。该研究的理论清楚地描述了所选 token 的最优性,并自然地扩展到了序列到序列或因果分类设置。

梯度下降的收敛(第 4-5 章)

通过适当的初始化和线性头 h (・),组合 key-query 变量 W 的梯度下降(GD)迭代在方向上收敛到(Att-SVM)的局部最优解(第 5 节)。要实现局部最优,所选 token 必须比相邻 token 得分更高。

局部最优方向不一定是唯一的,可以根据问题的几何特征来确定 [TLZO23]。作为一项重要贡献,作者确定了保证向全局最优方向收敛的几何条件(第 4 章)。这些条件包括: 

  • 最佳 token 在分数上有明显区别;

  • 初始梯度方向与最佳 token 一致。

除此以外,论文还展示了过度参数化(即维度 d 较大,以及同等条件)通过确保(1)(Att-SVM)的可行性,以及(2)良性优化 landscape(即不存在静止点和虚假的局部最优方向)来催化全局收敛(见第 5.2 节)。

图 1 和图 2 对此进行了说明。

0c5cd3e4a011f2ee25ddcb65c1f3911f.png

4e6b4b36d8d3e73165e125408a139cf8.png

SVM 等价的通用性(第 6 章)

当使用线性 h (・) 进行优化时,注意力层会固有地偏向于从每个序列中选择一个 token(又称硬注意力)。这反映在了 (Att-SVM) 中,表现为输出 token 是输入 token 的凸组合。与此相反,作者表明非线性头必须由多个 token 组成,从而突出了它们在 transformer 动态过程中的重要性(第 6.1 节)。利用从理论中获得的洞察力,作者提出了一种更通用的 SVM 等价方法。

值得注意的是,他们证明了在理论未涵盖的普遍情况下(例如,h (・) 是一个 MLP),本文的方法能准确预测通过梯度下降训练的注意力的隐含偏差。具体来说,本文的通用公式将注意力权重解耦为两个部分:一个是由 SVM 控制的定向部分,它通过应用 0-1 掩码来选择标记;另一个是有限部分,它通过调整 softmax 概率来决定所选 token 的精确组成。

这些发现的一个重要特点是,它们适用于任意数据集(只要 SVM 可行),并且可以用数字验证。作者通过实验广泛验证了 transformer 的最大边际等价性和隐含偏差。作者认为,这些发现有助于理解作为分层最大边际 token 选择机制的 transformer,可为即将开展的有关其优化和泛化动态的研究奠定基础。

参考内容:

https://news.ycombinator.com/item?id=37367951

https://twitter.com/vboykis/status/1698055632543207862

© THE END 

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

c2546445590646e7974c43b2623cf20f.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

1433c0778aea1492d62e424deaa84203.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

f293baed22c9eacbab1dafa8b90aef38.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

23a155a045d60e6bb3be543f6ecd09a0.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值