leetcode 1029. Two City Scheduling 解法 python

本文介绍了一个面试调度问题的解决方案,目标是最小化2N个人分别前往两个城市的总成本,确保每个城市都有N人到达。通过计算每个人前往A城市与B城市的成本差值,并对这些差值进行排序,可以有效地找到最小成本的方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.问题描述

There are 2N people a company is planning to interview. The cost of flying the i-th person to city A is costs[i][0], and the cost of flying the i-th person to city B is costs[i][1].

Return the minimum cost to fly every person to a city such that exactly N people arrive in each city.

 

Example 1:

Input: [[10,20],[30,200],[400,50],[30,20]]
Output: 110
Explanation: 
The first person goes to city A for a cost of 10.
The second person goes to city A for a cost of 30.
The third person goes to city B for a cost of 50.
The fourth person goes to city B for a cost of 20.

The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.

 

Note:

  1. 1 <= costs.length <= 100
  2. It is guaranteed that costs.length is even.
  3. 1 <= costs[i][0], costs[i][1] <= 1000

二.解决思路

用第一个维度减第二个维度

得到去a城市和去b城市两者的差值

差值负得越多,说明去a城市比去b城市越划算,正得越多则反之

将差值排序,然后每次加一个正得对多的和负得最多得,最后就能得到mincost

更多leetcode算法题解法请关注我的专栏leetcode算法从零到结束或关注我

欢迎大家一起讨论一起刷题一起ac

三.源码

class Solution:
    def twoCitySchedCost(self, costs: List[List[int]]) -> int:
        N = len(costs)
        diff = [c[0] - c[1] for c in costs]
        indices =  sorted(range(0,N), key=lambda k:diff[k])
        result = 0
        for i in range(int(N/2)):
            result += costs[indices[i]][0]
            result += costs[indices[N-i-1]][1]
        return result

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值