【自动驾驶】Submap总结

大规模建图优化问题

使用图像或雷达扫描点云帧序列完成大规模三维重建,如城市规模三维重建,将全局环境地图分割为submap(子地图),“各个击破”——逐一优化每个子地图,并优化子地图间关联关系,如相对位姿优化调整。
Ni Kai等人提出的主要流程:a. 消除每个submap内部的优化变量,只保留submap之间的变量 b. 优化submap之间的变量 c. 优化每个submap内部的变量。问题中变量是指传感器位姿和地图点坐标等。引入”局部坐标系“,submap内部变量用基础节点(base node,笔者理解为根据submap设定的局部坐标系)表达相对坐标,submap之间优化通过调整基础节点实现,使得submap整体发生很大变化,但内部变量无需改变。

  1. 分割submap在工程上具体操作是什么?
    形如切豆腐,分割后一个几何空间中的路标点和相机位姿组成一个submap。
  2. submap间的约束如何构建?
    如使用重投影约束,子地图 A中某陆标点 X A \bold X_A XA(坐标为A对应的局部坐标系)被B中的相机观测到,可据此构建submap间的重投影约束。Ni Kai的方法以基础节点的姿态与位置参数为优化参数,间接改变陆标点坐标和相机的位姿参数,以优化重投影误差:该陆标点在B相应局部坐标系下的表达,

X B = R W B − 1 [ ( R W A X A + t W A ) − t W B ] \bold X_B=R_{WB}^{-1}[(R_{WA}\bold X_A+t_{WA})-t_{WB}] XB=RWB1[(RWAX

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值