数据结构-十大经典排序算法之插入排序

本文深入解析插入排序算法,从算法思想到具体步骤,再到动态演示与代码实现,全面掌握这一经典排序方法。通过构建有序序列,对未排序数据进行高效处理,实现数据的快速排序。

数据结构-十大经典排序算法之插入排序

  • 算法思想
  • 算法步骤
  • 算法动态演示
  • 部分代码实现

第一部分:算法思想

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
第二部分:算法步骤

从第一个元素开始,该元素认为已经被排序;

取下一个元素,在已经排序的元素序列中从后向前扫描;

如果已排序元素大于新元素,将已排序元素移到下一位置;

重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;

将新元素插入到该位置后;

重复步骤2~5。
第三部分:算法动态演示

在这里插入图片描述
第四部分:部分代码实现


void sort_array(int *arr, int n)
//  编程实现《插入排序算法》:将乱序序列arr转化为升序序列
//  函数参数:乱序整数数组(无重复元素) 数组长度
{
	int temp ;
	int j ;
    for(int i = 0 ;i<n;i++){
		temp = arr[i] ;
		j = i -1 ;
		while(j>=0&&arr[j]>temp){
			arr[j+1] = arr[j];
			j--;
		}
		arr[j+1] = temp ;
	}
}

  • 看到这了,如果觉得有用的话就动动手指点个赞吧,下期带来“数据结构-十大经典排序算法之-希尔排序”。
Python 中集成 Ollama 可以通过使用 `ollama` 官方提供的 Python 客户端库来实现。Ollama 是一个本地运行的大型语言模型(LLM)工具,它支持多种模型,如 Llama 2、Mistral 等,并且可以通过简单的 APIPython 应用程序集成。 ### 安装 Ollama Python 库 首先,需要确保你已经在本地系统上安装了 Ollama。你可以从 [Ollama 官方网站](https://ollama.com/)下载并安装适用于你操作系统的版本。 接下来,安装 Python 客户端库。Ollama 提供了一个官方的 Python 包,可以通过 `pip` 安装: ```bash pip install ollama ``` ### 使用 Ollama Python 库 安装完成后,可以使用 `ollama` 模块来调用 OllamaAPI。以下是一个简单的示例,展示如何使用 Ollama 的 `generate` 方法来生成文本: ```python import ollama # 生成文本 response = ollama.generate(model='llama3', prompt='为什么天空是蓝色的?') # 打印响应 print(response['response']) ``` 在这个例子中,`model` 参数指定了要使用的模型(例如 `llama3`),`prompt` 参数是用户输入的提示词。Ollama 会根据提示词生成相应的文本,并返回一个包含 `response` 字段的字典。 ### 获取模型列表 如果你想查看当前可用的模型,可以使用以下代码: ```python import ollama # 获取模型列表 models = ollama.list() # 打印模型列表 for model in models['models']: print(model['name']) ``` ### 模型对话(Chat) Ollama 还支持更复杂的对话模式,允许你在多轮对话中保持上下文。以下是一个使用 `chat` 方法的示例: ```python import ollama # 开始对话 response = ollama.chat( model='llama3', messages=[ {'role': 'user', 'content': '你好,你能帮我做什么?'}, {'role': 'assistant', 'content': '你好!我可以帮助你回答问题、提供建议,甚至进行简单的创作。有什么我可以帮你的吗?'}, {'role': 'user', 'content': '你能告诉我关于机器学习的基础知识吗?'} ] ) # 打印响应 print(response['message']['content']) ``` 在这个例子中,`messages` 参数是一个包含多个对话记录的列表,每个记录都有一个 `role` 和 `content` 字段。Ollama 会根据这些对话记录生成相应的回复。 ### 错误处理 在实际应用中,建议添加错误处理逻辑,以应对可能出现的网络问题或模型加载失败等情况: ```python import ollama try: response = ollama.generate(model='llama3', prompt='为什么天空是蓝色的?') print(response['response']) except Exception as e: print(f"发生错误: {e}") ``` ### 相关问题
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值