L - Pyramids解题报告(熊禾强)

本文介绍了一种求解四面体体积的方法,通过应用欧拉公式,使用输入的六条棱长计算出四面体的体积,并提供了一个具体的实例来演示计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

L - Pyramids
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Recently in Farland, a country in Asia, a famous scientist Mr. Log Archeo has discovered ancient pyramids. But unlike those in Egypt and Central America, they have triangular (not rectangular) foundation. That is, they are tetrahedrons in mathematical sense. In order to find out some important facts about the early society of the country (it is widely believed that the pyramid sizes are in tight connection with Farland ancient calendar), Mr. Archeo needs to know the volume of the pyramids. Unluckily, he has reliable data about their edge lengths only. Please, help him!

Input

The file contains six positive integer numbers not exceeding 1000 separated by spaces, each number is one of the edge lengths of the pyramid ABCD. The order of the edges is the following: AB, AC, AD, BC, BD, CD.

Output

A real number -- the volume printed accurate to four digits after decimal point.

Sample Input

1000 1000 1000 3 4 5

Sample Output

1999.9938


题目大意:输入四面体的六条棱,求体积。

解题思路:欧拉公式:http://course.szu.edu.cn/weijifen/picture/MC50024.htm

V=sqrt((4*a*a*b*b*c*c-a*a*(b*b+c*c-m*m)*(b*b+c*c-m*m)-b*b*(c*c+a*a-n*n)*(c*c+a*a-n*n)-c*c*(a*a+b*b-l*l)*(a*a+b*b-l*l)+(a*a+b*b-l*l)*(b*b+c*c-m*m)*(c*c+a*a-n*n)))/12;

没公式做不出来,所以最好不要痴迷于此题

代码:


#include <stdio.h>   
#include <math.h>   
double a,b,c,d,e,f;  
double i1,i2,i3,i4;  
int main()
{  
 while(scanf("%lf %lf %lf %lf %lf %lf",&a,&b,&c,&d,&e,&f)!=EOF){  
  i1=acos((a*a+b*b-d*d)/2/a/b);  
  i2=acos((b*b+c*c-f*f)/2/c/b);  
  i3=acos((a*a+c*c-e*e)/2/a/c);  
  i4=1.0/2*(i1+i2+i3);  
 printf("%.4f\n",1.0/3*a*b*c*sqrt(sin(i4)*sin(i4-i1)*sin(i4-i2)*sin(i4-i3)));  
 }  
  return 0;  
}  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值