c++中的size_t 和 size_type, typedef和decltype

C++类型深入解析
本文详细解释了C++中的typedef和decltype的用法,并对比了size_t与size_type的区别及应用场景,帮助读者更好地理解这些类型在实际编程中的作用。

c++中的size_t 和 size_type, typedef和decltype

size_t, size_type, key_type, value_type, mapped_type, decltype, typeof,type type type!

在学习C++的过程中,经常会看到size_t, size_type, decltype, typeof…各种type!已经混淆了。为了梳理一遍知识也为了日后自己能更方便的回忆,决定以博客的形式整理一下。

1. typedef和decltype

(1)typedef
关键字typedef其实就是类型别名,它是某种类型的同义词
比如:

typedef double my_double;    //my_double是double的同义词
typedef my_double your_double, *his_double;   
//your_double是double的同义词,*his_double是double*的同义词

在定义的类型名别后,别名和类型名的作用就一模一样了,比如:

此代码报错如下,如何修改?// Functor implementations -*- C++ -*- // Copyright (C) 2001-2014 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_function.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{functional} */ #ifndef _STL_FUNCTION_H #define _STL_FUNCTION_H 1 #if __cplusplus > 201103L #include <bits/move.h> #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // 20.3.1 base classes /** @defgroup functors Function Objects * @ingroup utilities * * Function objects, or @e functors, are objects with an @c operator() * defined and accessible. They can be passed as arguments to algorithm * templates and used in place of a function pointer. Not only is the * resulting expressiveness of the library increased, but the generated * code can be more efficient than what you might write by hand. When we * refer to @a functors, then, generally we include function pointers in * the description as well. * * Often, functors are only created as temporaries passed to algorithm * calls, rather than being created as named variables. * * Two examples taken from the standard itself follow. To perform a * by-element addition of two vectors @c a and @c b containing @c double, * and put the result in @c a, use * \code * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>()); * \endcode * To negate every element in @c a, use * \code * transform(a.begin(), a.end(), a.begin(), negate<double>()); * \endcode * The addition and negation functions will be inlined directly. * * The standard functors are derived from structs named @c unary_function * and @c binary_function. These two classes contain nothing but typedefs, * to aid in generic (template) programming. If you write your own * functors, you might consider doing the same. * * @{ */ /** * This is one of the @link functors functor base classes@endlink. */ template<typename _Arg, typename _Result> struct unary_function { /// @c argument_type is the type of the argument typedef _Arg argument_type; /// @c result_type is the return type typedef _Result result_type; }; /** * This is one of the @link functors functor base classes@endlink. */ template<typename _Arg1, typename _Arg2, typename _Result> struct binary_function { /// @c first_argument_type is the type of the first argument typedef _Arg1 first_argument_type; /// @c second_argument_type is the type of the second argument typedef _Arg2 second_argument_type; /// @c result_type is the return type typedef _Result result_type; }; /** @} */ // 20.3.2 arithmetic /** @defgroup arithmetic_functors Arithmetic Classes * @ingroup functors * * Because basic math often needs to be done during an algorithm, * the library provides functors for those operations. See the * documentation for @link functors the base classes@endlink * for examples of their use. * * @{ */ #if __cplusplus > 201103L struct __is_transparent; // undefined template<typename _Tp = void> struct plus; template<typename _Tp = void> struct minus; template<typename _Tp = void> struct multiplies; template<typename _Tp = void> struct divides; template<typename _Tp = void> struct modulus; template<typename _Tp = void> struct negate; #endif /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct plus : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct minus : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct multiplies : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct divides : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct modulus : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct negate : public unary_function<_Tp, _Tp> { _Tp operator()(const _Tp& __x) const { return -__x; } }; #if __cplusplus > 201103L #define __cpp_lib_transparent_operators 201210 //#define __cpp_lib_generic_associative_lookup 201304 template<> struct plus<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) + std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) + std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) + std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct minus<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) - std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) - std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) - std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct multiplies<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) * std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) * std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) * std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct divides<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) / std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) / std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) / std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct modulus<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) % std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) % std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) % std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct negate<void> { template <typename _Tp> auto operator()(_Tp&& __t) const noexcept(noexcept(-std::forward<_Tp>(__t))) -> decltype(-std::forward<_Tp>(__t)) { return -std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ // 20.3.3 comparisons /** @defgroup comparison_functors Comparison Classes * @ingroup functors * * The library provides six wrapper functors for all the basic comparisons * in C++, like @c <. * * @{ */ #if __cplusplus > 201103L template<typename _Tp = void> struct equal_to; template<typename _Tp = void> struct not_equal_to; template<typename _Tp = void> struct greater; template<typename _Tp = void> struct less; template<typename _Tp = void> struct greater_equal; template<typename _Tp = void> struct less_equal; #endif /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct equal_to : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct not_equal_to : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct greater : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct less : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct greater_equal : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct less_equal : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; #if __cplusplus > 201103L /// One of the @link comparison_functors comparison functors@endlink. template<> struct equal_to<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) == std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) == std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) == std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct not_equal_to<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) != std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) != std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) != std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) > std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) > std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) > std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) < std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) < std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) < std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater_equal<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) >= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) >= std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) >= std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less_equal<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) <= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) <= std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) <= std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; #endif /** @} */ // 20.3.4 logical operations /** @defgroup logical_functors Boolean Operations Classes * @ingroup functors * * Here are wrapper functors for Boolean operations: @c &&, @c ||, * and @c !. * * @{ */ #if __cplusplus > 201103L template<typename _Tp = void> struct logical_and; template<typename _Tp = void> struct logical_or; template<typename _Tp = void> struct logical_not; #endif /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_and : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_or : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_not : public unary_function<_Tp, bool> { bool operator()(const _Tp& __x) const { return !__x; } }; #if __cplusplus > 201103L /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_and<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) && std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) && std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) && std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_or<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) || std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) || std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) || std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_not<void> { template <typename _Tp> auto operator()(_Tp&& __t) const noexcept(noexcept(!std::forward<_Tp>(__t))) -> decltype(!std::forward<_Tp>(__t)) { return !std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ #if __cplusplus > 201103L template<typename _Tp = void> struct bit_and; template<typename _Tp = void> struct bit_or; template<typename _Tp = void> struct bit_xor; template<typename _Tp = void> struct bit_not; #endif // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 660. Missing Bitwise Operations. template<typename _Tp> struct bit_and : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } }; template<typename _Tp> struct bit_or : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } }; template<typename _Tp> struct bit_xor : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } }; template<typename _Tp> struct bit_not : public unary_function<_Tp, _Tp> { _Tp operator()(const _Tp& __x) const { return ~__x; } }; #if __cplusplus > 201103L template <> struct bit_and<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) & std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) & std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) & std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_or<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) | std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) | std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) | std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_xor<void> { template <typename _Tp, typename _Up> auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) ^ std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_not<void> { template <typename _Tp> auto operator()(_Tp&& __t) const noexcept(noexcept(~std::forward<_Tp>(__t))) -> decltype(~std::forward<_Tp>(__t)) { return ~std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif // 20.3.5 negators /** @defgroup negators Negators * @ingroup functors * * The functions @c not1 and @c not2 each take a predicate functor * and return an instance of @c unary_negate or * @c binary_negate, respectively. These classes are functors whose * @c operator() performs the stored predicate function and then returns * the negation of the result. * * For example, given a vector of integers and a trivial predicate, * \code * struct IntGreaterThanThree * : public std::unary_function<int, bool> * { * bool operator() (int x) { return x > 3; } * }; * * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree())); * \endcode * The call to @c find_if will locate the first index (i) of @c v for which * <code>!(v[i] > 3)</code> is true. * * The not1/unary_negate combination works on predicates taking a single * argument. The not2/binary_negate combination works on predicates which * take two arguments. * * @{ */ /// One of the @link negators negation functors@endlink. template<typename _Predicate> class unary_negate : public unary_function<typename _Predicate::argument_type, bool> { protected: _Predicate _M_pred; public: explicit unary_negate(const _Predicate& __x) : _M_pred(__x) { } bool operator()(const typename _Predicate::argument_type& __x) const { return !_M_pred(__x); } }; /// One of the @link negators negation functors@endlink. template<typename _Predicate> inline unary_negate<_Predicate> not1(const _Predicate& __pred) { return unary_negate<_Predicate>(__pred); } /// One of the @link negators negation functors@endlink. template<typename _Predicate> class binary_negate : public binary_function<typename _Predicate::first_argument_type, typename _Predicate::second_argument_type, bool> { protected: _Predicate _M_pred; public: explicit binary_negate(const _Predicate& __x) : _M_pred(__x) { } bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const { return !_M_pred(__x, __y); } }; /// One of the @link negators negation functors@endlink. template<typename _Predicate> inline binary_negate<_Predicate> not2(const _Predicate& __pred) { return binary_negate<_Predicate>(__pred); } /** @} */ // 20.3.7 adaptors pointers functions /** @defgroup pointer_adaptors Adaptors for pointers to functions * @ingroup functors * * The advantage of function objects over pointers to functions is that * the objects in the standard library declare nested typedefs describing * their argument and result types with uniform names (e.g., @c result_type * from the base classes @c unary_function and @c binary_function). * Sometimes those typedefs are required, not just optional. * * Adaptors are provided to turn pointers to unary (single-argument) and * binary (double-argument) functions into function objects. The * long-winded functor @c pointer_to_unary_function is constructed with a * function pointer @c f, and its @c operator() called with argument @c x * returns @c f(x). The functor @c pointer_to_binary_function does the same * thing, but with a double-argument @c f and @c operator(). * * The function @c ptr_fun takes a pointer-to-function @c f and constructs * an instance of the appropriate functor. * * @{ */ /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg, typename _Result> class pointer_to_unary_function : public unary_function<_Arg, _Result> { protected: _Result (*_M_ptr)(_Arg); public: pointer_to_unary_function() { } explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) { } _Result operator()(_Arg __x) const { return _M_ptr(__x); } }; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg, typename _Result> inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) { return pointer_to_unary_function<_Arg, _Result>(__x); } /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg1, typename _Arg2, typename _Result> class pointer_to_binary_function : public binary_function<_Arg1, _Arg2, _Result> { protected: _Result (*_M_ptr)(_Arg1, _Arg2); public: pointer_to_binary_function() { } explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) : _M_ptr(__x) { } _Result operator()(_Arg1 __x, _Arg2 __y) const { return _M_ptr(__x, __y); } }; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg1, typename _Arg2, typename _Result> inline pointer_to_binary_function<_Arg1, _Arg2, _Result> ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); } /** @} */ template<typename _Tp> struct _Identity : public unary_function<_Tp,_Tp> { _Tp& operator()(_Tp& __x) const { return __x; } const _Tp& operator()(const _Tp& __x) const { return __x; } }; template<typename _Pair> struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { typename _Pair::first_type& operator()(_Pair& __x) const { return __x.first; } const typename _Pair::first_type& operator()(const _Pair& __x) const { return __x.first; } #if __cplusplus >= 201103L template<typename _Pair2> typename _Pair2::first_type& operator()(_Pair2& __x) const { return __x.first; } template<typename _Pair2> const typename _Pair2::first_type& operator()(const _Pair2& __x) const { return __x.first; } #endif }; template<typename _Pair> struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> { typename _Pair::second_type& operator()(_Pair& __x) const { return __x.second; } const typename _Pair::second_type& operator()(const _Pair& __x) const { return __x.second; } }; // 20.3.8 adaptors pointers members /** @defgroup memory_adaptors Adaptors for pointers to members * @ingroup functors * * There are a total of 8 = 2^3 function objects in this family. * (1) Member functions taking no arguments vs member functions taking * one argument. * (2) Call through pointer vs call through reference. * (3) Const vs non-const member function. * * All of this complexity is in the function objects themselves. You can * ignore it by using the helper function mem_fun and mem_fun_ref, * which create whichever type of adaptor is appropriate. * * @{ */ /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class mem_fun_t : public unary_function<_Tp*, _Ret> { public: explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class const_mem_fun_t : public unary_function<const _Tp*, _Ret> { public: explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class const_mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret> { public: explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret> { public: explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; // Mem_fun adaptor helper functions. There are only two: // mem_fun and mem_fun_ref. template<typename _Ret, typename _Tp> inline mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)()) { return mem_fun_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline const_mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)() const) { return const_mem_fun_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)()) { return mem_fun_ref_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline const_mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) { return const_mem_fun_ref_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline const_mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } /** @} */ _GLIBCXX_END_NAMESPACE_VERSION } // namespace #if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED # include <backward/binders.h> #endif #endif /* _STL_FUNCTION_H */
最新发布
10-24
由于未给出具体的报错信息,下面先分析代码可能出现的报错情况及解决办法。 ### 可能的报错及解决方法 #### 1. 编译报错:找不到 `greater` 头文件 如果代码中使用了 `greater` 但没有包含相应的头文件,会导致编译错误。 **解决方法**:在代码开头添加 `#include <functional>`。 ```cpp #include <iostream> #include <queue> #include <vector> #include <functional> // 添加此头文件 using namespace std; // 自定义结构体用于存储元素值其索引 struct Element { int value; int index; // 重载小于运算符,用于优先队列比较 bool operator<(const Element& other) const { return value < other.value; } }; // 求滑动窗口的最大值 vector<int> maxSlidingWindow(const vector<int>& nums, int k) { priority_queue<Element> maxHeap; vector<int> result; for (int i = 0; i < nums.size(); ++i) { // 当堆顶元素的索引超出当前窗口范围时,移除堆顶元素 while (!maxHeap.empty() && maxHeap.top().index <= i - k) { maxHeap.pop(); } maxHeap.push({nums[i], i}); // 当窗口覆盖了 k 个元素时,开始记录最大值 if (i >= k - 1) { result.push_back(maxHeap.top().value); } } return result; } // 求滑动窗口的最小值 vector<int> minSlidingWindow(const vector<int>& nums, int k) { // 定义最小堆,通过重载小于运算符实现 priority_queue<Element, vector<Element>, greater<Element>> minHeap; vector<int> result; for (int i = 0; i < nums.size(); ++i) { // 当堆顶元素的索引超出当前窗口范围时,移除堆顶元素 while (!minHeap.empty() && minHeap.top().index <= i - k) { minHeap.pop(); } minHeap.push({nums[i], i}); // 当窗口覆盖了 k 个元素时,开始记录最小值 if (i >= k - 1) { result.push_back(minHeap.top().value); } } return result; } int main() { int n, k; cin >> n >> k; vector<int> nums(n); for (int i = 0; i < n; ++i) { cin >> nums[i]; } vector<int> maxValues = maxSlidingWindow(nums, k); vector<int> minValues = minSlidingWindow(nums, k); for (int i = 0; i < maxValues.size(); ++i) { cout << "Max: " << maxValues[i] << ", Min: " << minValues[i] << endl; } return 0; } ``` #### 2. 运行时错误:数组越界 如果输入的 `n` `k` 不符合要求(如 `k > n`),可能会导致代码在运行时出现数组越界错误。 **解决方法**:在 `main` 函数中添加输入验证。 ```cpp int main() { int n, k; cin >> n >> k; if (k > n) { cerr << "Error: k should be less than or equal to n." << endl; return 1; } vector<int> nums(n); for (int i = 0; i < n; ++i) { cin >> nums[i]; } vector<int> maxValues = maxSlidingWindow(nums, k); vector<int> minValues = minSlidingWindow(nums, k); for (int i = 0; i < maxValues.size(); ++i) { cout << "Max: " << maxValues[i] << ", Min: " << minValues[i] << endl; } return 0; } ``` #### 3. 逻辑错误:输出格式不符合要求 原代码输出的是每行包含最大值最小值,而题目要求分别输出最小值最大值的两行。 **解决方法**:修改输出部分的代码。 ```cpp int main() { int n, k; cin >> n >> k; if (k > n) { cerr << "Error: k should be less than or equal to n." << endl; return 1; } vector<int> nums(n); for (int i = 0; i < n; ++i) { cin >> nums[i]; } vector<int> maxValues = maxSlidingWindow(nums, k); vector<int> minValues = minSlidingWindow(nums, k); // 输出最小值 for (int i = 0; i < minValues.size(); ++i) { if (i > 0) cout << " "; cout << minValues[i]; } cout << endl; // 输出最大值 for (int i = 0; i < maxValues.size(); ++i) { if (i > 0) cout << " "; cout << maxValues[i]; } cout << endl; return 0; } ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值