Default Parameter Values in Python

本文深入探讨了Python中默认参数值的处理机制,特别是使用可变对象作为默认值时的行为,解释了为何会导致参数值不断累积,并提供了避免此类问题的解决方法。

Default Parameter Values in Python

Fredrik Lundh | July 17, 2008 | based on a comp.lang.python post

Python’s handling of default parameter values is one of a few things that tends to trip up most new Python programmers (but usually only once).

What causes the confusion is the behaviour you get when you use a “mutable” object as a default value; that is, a value that can be modified in place, like a list or a dictionary.

An example:

>>> def function(data=[]):
...     data.append(1)
...     return data
...
>>> function()
[1]
>>> function()
[1, 1]
>>> function()
[1, 1, 1]

As you can see, the list keeps getting longer and longer. If you look at the list identity, you’ll see that the function keeps returning the same object:

>>> id(function())
12516768
>>> id(function())
12516768
>>> id(function())
12516768

The reason is simple: the function keeps using the same object, in each call. The modifications we make are “sticky”.

Why does this happen?

Default parameter values are always evaluated when, and only when, the “def” statement they belong to is executed; see:

http://docs.python.org/ref/function.html

for the relevant section in the Language Reference.

Also note that “def” is an executable statement in Python, and that default arguments are evaluated in the “def” statement’s environment. If you execute “def” multiple times, it’ll create a new function object (with freshly calculated default values) each time. We’ll see examples of this below.

What to do instead?

The workaround is, as others have mentioned, to use a placeholder value instead of modifying the default value.None is a common value:

def myfunc(value=None):
    if value is None:
        value = []
    # modify value here

If you need to handle arbitrary objects (including None), you can use a sentinel object:

sentinel = object()

def myfunc(value=sentinel):
    if value is sentinel:
        value = expression
    # use/modify value here

In older code, written before “object” was introduced, you sometimes see things like

sentinel = ['placeholder']

used to create a non-false object with a unique identity; [] creates a new list every time it is evaluated.

Valid uses for mutable defaults

Finally, it should be noted that more advanced Python code often uses this mechanism to its advantage; for example, if you create a bunch of UI buttons in a loop, you might try something like:

for i in range(10):
    def callback():
        print "clicked button", i
    UI.Button("button %s" % i, callback)

only to find that all callbacks print the same value (most likely 9, in this case). The reason for this is that Python’snested scopes bind to variables, not object values, so all callback instances will see the current (=last) value of the “i” variable. To fix this, use explicit binding:

for i in range(10):
    def callback(i=i):
        print "clicked button", i
    UI.Button("button %s" % i, callback)

The “i=i” part binds the parameter “i” (a local variable) to the current value of the outer variable “i”.

Two other uses are local caches/memoization; e.g.

def calculate(a, b, c, memo={}):
    try:
        value = memo[a, b, c] # return already calculated value
    except KeyError:
        value = heavy_calculation(a, b, c)
        memo[a, b, c] = value # update the memo dictionary
    return value

(this is especially nice for certain kinds of recursive algorithms)

and, for highly optimized code, local rebinding of global names:

import math

def this_one_must_be_fast(x, sin=math.sin, cos=math.cos):
    ...

How does this work, in detail?

When Python executes a “def” statement, it takes some ready-made pieces (including the compiled code for the function body and the current namespace), and creates a new function object. When it does this, it also evaluates the default values.

The various components are available as attributes on the function object; using the function we used above:

>>> function.func_name
'function'
>>> function.func_code
<code object function at 00BEC770, file "<stdin>", line 1>
>>> function.func_defaults
([1, 1, 1],)
>>> function.func_globals
{'function': <function function at 0x00BF1C30>,
'__builtins__': <module '__builtin__' (built-in)>,
'__name__': '__main__', '__doc__': None}

Since you can access the defaults, you can also modify them:

>>> function.func_defaults[0][:] = []
>>> function()
[1]
>>> function.func_defaults
([1],)

However, this is not exactly something I’d recommend for regular use…

Another way to reset the defaults is to simply re-execute the same “def” statement. Python will then create a new binding to the code object, evaluate the defaults, and assign the function object to the same variable as before. But again, only do that if you know exactly what you’re doing.

And yes, if you happen to have the pieces but not the function, you can use the function class in the new module to create your own function object.


分布式微服务企业级系统是一个基于Spring、SpringMVC、MyBatis和Dubbo等技术的分布式敏捷开发系统架构。该系统采用微服务架构和模块化设计,提供整套公共微服务模块,包括集中权限管理(支持单点登录)、内容管理、支付中心、用户管理(支持第三方登录)、微信平台、存储系统、配置中心、日志分析、任务和通知等功能。系统支持服务治理、监控和追踪,确保高可用性和可扩展性,适用于中小型企业的J2EE企业级开发解决方案。 该系统使用Java作为主要编程语言,结合Spring框架实现依赖注入和事务管理,SpringMVC处理Web请求,MyBatis进行数据持久化操作,Dubbo实现分布式服务调用。架构模式包括微服务架构、分布式系统架构和模块化架构,设计模式应用了单例模式、工厂模式和观察者模式,以提高代码复用性和系统稳定性。 应用场景广泛,可用于企业信息化管理、电子商务平台、社交应用开发等领域,帮助开发者快速构建高效、安全的分布式系统。本资源包含完整的源码和详细论文,适合计算机科学或软件工程专业的毕业设计参考,提供实践案例和技术文档,助力学生和开发者深入理解微服务架构和分布式系统实现。 【版权说明】源码来源于网络,遵循原项目开源协议。付费内容为本人原创论文,包含技术分析和实现思路。仅供学习交流使用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值