Python Performance Tips, Part 2 - Python Performance 3 of n

Python Performance Tips, Part 2

It’s a useful reminder that  statically compiled code still matter. Just to name a few, Chrome, Firefox, MySQL, MS Office, and Photoshop are highly optimized software that many of us are using every day. Python, as an interpreted language, is not oblivious to this fact. Python alone cannot meet requirements in some domains where efficiency is a main priority. This is why Python supports infrastructure that touches the bare metal for you, by delegating heavy work to fast languages such as C. This is a critical feature for high-performance computing and embedded programming.  Python Performance Tips Part 1 discussed how to use Python effectively. In part 2, we will cover profiling and extending Python.

  1. First, resist your temptation of optimization.

    Optimization will introduce complexity to your code base. Check the following list before integrating with other languages. If your solution is “good enough”, optimizing is not necessarily good.
    • Do your customers report speed problems?
    • Can you minimize hard disk I/O access?
    • Can you minimize network I/O access?
    • Can you upgrade your hardware?
    • Are you writing libraries for other developers?
    • Is your third-party software up-to-date?
  2. Profile code with tools, not with intuition.
    Speed problem can be subtle, so do not rely on intuition. Thanks to the “cprofiles” module, you can profile Python code by simply running
    “python -m cProfile myprogram.py”
    We wrote a test program (right). The profiling result is in the black box (above). The bottleneck here is the “very_slow()” function call. We can also see that “fast()” and “slow()” has been called 200 times each. This implies that if we can improve “fast()” and “slow()”, we will get a decent increase in performance. The cprofiles module can also be imported during runtime. This is useful for checking long-running processes.
  3. Review running-time complexity.
    After profiling, give some basic analysis of how fast your solution is. Constant time is ideal. Logarithm algorithm is stable. Factorial solution will not scale.
    O(1) -> O(lg n) -> O(n lg n) -> O(n^2) -> O(n^3) -> O(n^k) -> O(k^n) -> O(n!)
  4. Use third-party packages.
    There are many high-performance libraries and tools designed for Python. Here is a short list of useful acceleration packages.

  5. Use multiprocessing module for true concurrency.
    Because GIL (Global Interpreter Lock) will serialize threads, multi-threading in Python cannot speed up your code in multiprocessor machines nor in machine cluster. Therefore Python offers a multiprocessing module which can spawn extra processes instead of threadslifting the limitation imposed by GIL. Furthermore, you can combine this tip with external C code, to make your program even faster.

    Note that a process is usually more expensive than a thread, since threads automatically share the same memory address space and file descriptors. This means that it will take more time to create a process, and likely cost more memory than creating a thread. This is something to consider if you plan to spawn many processes. 

  6. Let’s go native.
    So you’ve decided to use native code for performance. With the standard ctypes module, you can directly load compiled binary (.dll or .so files) into Python, without worrying about writing C/C++ code or build dependencies.For example, we wrote a program (on the right) that loads libc to generate random numbers.
    However, the overhead of ctypes binding is not light. You should consider ctypes as a quick glue to your OS libraries or device drivers for accessing hardware.There are several libraries such as SWIG, Cython, and Boost Python that introduce much less calling overhead than ctypes does. Here we pick Boost Python library to inter-operate with Python, because Boost Python supports object-oriented features such as class and inheritance. As we can see from the example (on the right), we keep the usual C++ code (line 1~7), and then import it later (line 21~24). The major work here is to write a wrapper (line 10~18).

 

Conclusion:

I hope the Python performance series has made you a better developer. At last, I would like to point out that while pushing performance to the limit is a fun game, premature optimization could turn it into a travesty. Python empowers you to interface with C-compatible languages seamlessly, but Python prefers development speed over executing speed with good reason. You have to ask yourself if users would pay extra for your hard-working hours on optimization. In addition, eliminating code readability just to save a few milliseconds almost never goes well. Developers in your team will always thank you for writing clean code. Stay close by the Python side, for life is short. :)

See also Python Performance Tips, Part 1

From
http://blog.monitis.com/index.php/2012/02/13/python-performance-tips-part-1/
http://blog.monitis.com/index.php/2012/03/21/python-performance-tips-part-2/

Chinese version
http://www.oschina.net/question/1579_45822


【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值