细说ReactiveCocoa的冷信号与热信号(一)

本文介绍了ReactiveCocoa框架中的冷信号与热信号概念及其区别。通过对比冷信号的被动性和热信号的主动性,解释了两者在一对多共享信息方面的不同特性。

背景

ReactiveCocoa(简称RAC)是最初由GitHub团队开发的一套基于Cocoa的FRP框架。FRP即Functional Reactive Programming(函数式响应式编程),其优点是用随时间改变的函数表示用户输入,这样就不需要可变状态了。我们之前的文章“RACSignal的Subscription深入分析”里曾经详细讲解过RAC核心概念之一RACSignal的实现原理。在美团客户端中,我们大量使用了这个框架。冷信号与热信号的概念很容易混淆并造成一定的问题。鉴于这个问题具有一定普遍性,我将用一系列文章讲解RAC中冷信号与热信号的相关知识点,希望可以加深大家的理解。本文是系列文章的第一篇。

p.s. 以下代码和示例基于ReactiveCocoa v2.5

什么是冷信号与热信号

冷热信号的概念源于.NET框架Reactive Extensions(RX)中的Hot Observable和Cold Observable,两者的区别是:

  1. Hot Observable是主动的,尽管你并没有订阅事件,但是它会时刻推送,就像鼠标移动;而Cold Observable是被动的,只有当你订阅的时候,它才会发布消息。

  2. Hot Observable可以有多个订阅者,是一对多,集合可以与订阅者共享信息;而Cold Observable只能一对一,当有不同的订阅者,消息是重新完整发送。

这里面的Observables可以理解为RACSignal。为了加深理解,我们来看这样的几组代码:

    RACSignal *signal = [RACSignal createSignal:^RACDisposable *(id<RACSubscriber> subscriber) {
        [subscriber sendNext:@1];
        [subscriber sendNext:@2];
        [subscriber sendNext:@3];
        [subscriber sendCompleted];
        return nil;
    }];
    NSLog(@"Signal was created.");
    [[RACScheduler mainThreadScheduler] afterDelay:0.1 schedule:^{
        [signal subscribeNext:^(id x) {
            NSLog(@"Subscriber 1 recveive: %@", x);
        }];
    }];

    [[RACScheduler mainThreadScheduler] afterDelay:1 schedule:^{
        [signal subscribeNext:^(id x) {
            NSLog(@"Subscriber 2 recveive: %@", x);
        }];
    }];

以上简单地创建了一个信号,并且依次发送@1,@2,@3作为值。下面分别有两个订阅者在不同的时间段进行了订阅,运行的结果如下:

2015-08-11 18:33:21.681 RACDemos[6505:1125196] Signal was created.
2015-08-11 18:33:21.793 RACDemos[6505:1125196] Subscriber 1 recveive: 1
2015-08-11 18:33:21.793 RACDemos[6505:1125196] Subscriber 1 recveive: 2
2015-08-11 18:33:21.793 RACDemos[6505:1125196] Subscriber 1 recveive: 3
2015-08-11 18:33:22.683 RACDemos[6505:1125196] Subscriber 2 recveive: 1
2015-08-11 18:33:22.683 RACDemos[6505:1125196] Subscriber 2 recveive: 2
2015-08-11 18:33:22.683 RACDemos[6505:1125196] Subscriber 2 recveive: 3

我们可以看到,信号在18:33:21.681时被创建,18:33:21.793依次接到1、2、3三个值,而在18:33:22.683再依次接到1、2、3三个值。说明了变量名为signal的这个信号,在两个不同时间段的订阅过程中,分别完整地发送了所有的消息。

我们再对这段代码进行一个小的改动:

    RACMulticastConnection *connection = [[RACSignal createSignal:^RACDisposable *(id<RACSubscriber> subscriber) {
        [[RACScheduler mainThreadScheduler] afterDelay:1 schedule:^{
            [subscriber sendNext:@1];
        }];

        [[RACScheduler mainThreadScheduler] afterDelay:2 schedule:^{
            [subscriber sendNext:@2];
        }];

        [[RACScheduler mainThreadScheduler] afterDelay:3 schedule:^{
            [subscriber sendNext:@3];
        }];

        [[RACScheduler mainThreadScheduler] afterDelay:4 schedule:^{
            [subscriber sendCompleted];
        }];
        return nil;
    }] publish];
    [connection connect];
    RACSignal *signal = connection.signal;

    NSLog(@"Signal was created.");
    [[RACScheduler mainThreadScheduler] afterDelay:1.1 schedule:^{
        [signal subscribeNext:^(id x) {
            NSLog(@"Subscriber 1 recveive: %@", x);
        }];
    }];

    [[RACScheduler mainThreadScheduler] afterDelay:2.1 schedule:^{
        [signal subscribeNext:^(id x) {
            NSLog(@"Subscriber 2 recveive: %@", x);
        }];
    }];

稍微有些复杂,我们来一一分析:

  • 创建了一个信号,在1秒、2秒、3秒分别发送1、2、3这三个值,4秒发送结束信号。
  • 对这个信号调用publish方法得到一个RACMulticastConnection。
  • 让connection进行连接操作。
  • 获得connection的信号。
  • 分别在1.1秒和2.1秒订阅获得的信号。

抛开RACMulticastConnection是个什么东东,我们先来看下结果:

2015-08-12 11:07:49.943 RACDemos[9418:1186344] Signal was created.
2015-08-12 11:07:52.088 RACDemos[9418:1186344] Subscriber 1 recveive: 2
2015-08-12 11:07:53.044 RACDemos[9418:1186344] Subscriber 1 recveive: 3
2015-08-12 11:07:53.044 RACDemos[9418:1186344] Subscriber 2 recveive: 3

首先告诉大家- [RACSignal publish]- [RACMulticastConnection connect]- [RACMulticastConnection signal]这几个操作生成了一个热信号。
我们再来关注下输出结果的一些细节:

  • 信号在11:07:49.943被创建
  • 11:07:52.088时订阅者1才收到2这个值,说明1这个值没有接收到,时间间隔是2秒多
  • 11:07:53.044时订阅者1和订阅者2同时收到3这个值,时间间隔是3秒多

参考一开始的Hot Observables的论述和两段小程序的输出结果,我们可以确定冷热信号的如下特点:

  1. 热信号是主动的,即使你没有订阅事件,它仍然会时刻推送。如第二个例子,信号在50秒被创建,51秒的时候1这个值就推送出来了,但是当时还没有订阅者。而冷信号是被动的,只有当你订阅的时候,它才会发送消息。如第一个例子。
  2. 热信号可以有多个订阅者,是一对多,信号可以与订阅者共享信息。如第二个例子,订阅者1和订阅者2是共享的,他们都能在同一时间接收到3这个值。而冷信号只能一对一,当有不同的订阅者,消息会从新完整发送。如第一个例子,我们可以观察到两个订阅者没有联系,都是基于各自的订阅时间开始接收消息的。

好的,至此我们知道了什么是冷信号与热信号,了解了它们的特点。下一篇文章我们来看看为什么要区分冷信号与热信号。

内容概要:本文设计了种基于PLC的全自动洗衣机控制系统内容概要:本文设计了种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件PLC的专业的本科生、初级通信联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境MCGS组态平台进行程序高校毕业设计或调试运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑互锁机制,关注I/O分配硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
### 原理 FreeRTOS的任务通知(Task Notifications)是个轻量级、快速的机制,用于在任务之间发送简单的信号或传递数据。从V8.2.0版本开始,FreeRTOS新增了任务通知这个功能,可以使用任务通知来代替信号量、消息队列、事件组等。`vTaskNotifyGiveFromISR` 作为任务通知机制的部分,是 `xTaskNotifyGive` 的中断安全版本,专为在中断服务程序中使用而设计。它通过直接操作任务控制块中的通知值,避免了传统信号量操作中额外的内存分配和复杂的数据结构管理,提高了效率。当调用 `vTaskNotifyGiveFromISR` 时,会将目标任务的通知值自动加 1,这信号量的释放操作类似,即增加信号量的计数值。而接收任务可以使用 `ulTaskNotifyTake` 函数来获取通知值,这类似于信号量的获取操作,当通知值大于 0 时,任务可以继续执行,否则任务将进入阻塞状态,等待通知值增加。 ### 使用场景 `vTaskNotifyGiveFromISR` 适用于以下场景: - **中断驱动的事件处理**:在中断服务程序中检测到特定事件发生时,需要通知任务进行相应的处理。例如,外部设备触发了中断,中断服务程序可以使用 `vTaskNotifyGiveFromISR` 通知任务进行数据读取或处理。 - **轻量级信号量替代**:当系统资源有限,且只需要简单的信号量功能时,使用任务通知可以减少内存开销和上下文切换时间。例如,在嵌入式系统中,需要在中断和任务之间进行简单的同步操作。 ### 使用方法 以下是个使用 `vTaskNotifyGiveFromISR` 代替信号量的示例代码: ```c #include "FreeRTOS.h" #include "task.h" // 定义任务句柄 TaskHandle_t xTaskToNotify; // 模拟中断服务程序 void vInterruptServiceRoutine(void) { BaseType_t xHigherPriorityTaskWoken = pdFALSE; // 向指定任务发送通知 vTaskNotifyGiveFromISR(xTaskToNotify, &xHigherPriorityTaskWoken); // 如果有更高优先级的任务因该通知而解除阻塞,则进行上下文切换 portYIELD_FROM_ISR(xHigherPriorityTaskWoken); } // 任务函数 void vTaskFunction(void *pvParameters) { for (;;) { // 等待任务通知 ulTaskNotifyTake(pdTRUE, portMAX_DELAY); // 处理任务通知 // ... } } // 创建任务 void main(void) { xTaskCreate(vTaskFunction, "Task", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1, &xTaskToNotify); // 启动调度器 vTaskStartScheduler(); for (;;) { // 不会执行到这里 } } ``` 在上述代码中,`vInterruptServiceRoutine` 模拟了个中断服务程序,在其中调用 `vTaskNotifyGiveFromISR` 向指定任务发送通知。`vTaskFunction` 是个任务函数,使用 `ulTaskNotifyTake` 等待任务通知。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值