《算法笔记》4.4小节——算法初步->贪心
用局部最优推断全局最优
贪心算法使用的问题一定满足最优子结构性质,即一个问题的最优解可以由其子问题的最优解有效构造
并不是所有问题都适用贪心算法
1、简单贪心
PTA B1020 月饼 (25分)
#include <cstdio>
#include <algorithm>
using namespace std;
struct mooncake{
double store;
double sell;
double price;
}cake[1010];
bool cmp(mooncake a,mooncake b){
return a.price> b.price;
}
int main(){
int n;
double D;
scanf("%d%lf",&n,&D);
for(int i=0;i<n;i++){
scanf("%lf",&cake[i].store);
}
for(int i=0;i<n;i++){
scanf("%lf",&cake[i].sell);
cake[i].price=cake[i].sell/cake[i].store;
}
sort(cake,cake+n,cmp);
double ans=0;
for(int i=0;i<n;i++){
if(cake[i].store<=D){
D-=cake[i].store;
ans+=cake[i].sell;
}else{
ans+=cake[i].price*D;
break;
}
}
printf("%.2f",ans);
return 0;
}
PTA B1023 组个最小数 (20分)
#include <cstdio>
int main(){
int count[10];
for(int i=0;i<10;i++){
scanf("%d",&count[i]);
}
for(int i=1;i<10;i++){
if(count[i]>0){
printf("%d",i);
count[i]--;
break;
}
}
for(int i=0;i<10;i++){
for(int j=0;j<count[i];j++){
printf("%d",i);
}
}
return 0;
}
2、区间贪心
区间不相交问题:a选择被包含的区间,b按左端点从大到小排列 则删去区间包含情况 总是选择左端点最大或右端点最小
区间选点问题:多个闭区间中最少需要确定多少个点 才能是每个闭区间都至少存在一个点——a选择被包含的区间,b按照左端点从大到小排列 则删去区间包含情况 总是选择左端点最大的区间的左端点
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 110;
struct Inteval {
int x, y;
}I[maxn];
bool cmp(Inteval a, Inteval b) {
if (a.x != b.x) return a.x > b.x; //左端点从大到小
else return a.y > b.y; //左相同 右端点从小到大
}
int main() {
int n;
while (scanf("%d", &n), n != 0) {
for (int i = 0; i < n; i++) {
scanf("%d%d", &I[i].x, &I[i].y);
}
sort(I, I + n, cmp);
//lastX=I[i].x即解决区间选点问题
int ans = 1, lastX = I[0].x; // lastX记录上一个被选中的区间的左端点
for (int i = 0; i < n; i++) {
if (I[i].y <= lastX) {
lastX = I[i].x;
ans++;
}
}
printf("%d\n", ans);
}
return 0;
}
1126 Problem A 看电视
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct program {
int si;
int ei;
}pgm[110];
bool cmp(program a,program b) {
if (a.si == b.si) return a.ei < b.ei;
else return a.si > b.si;
}
int main() {
int n;
while (scanf("%d", &n) != EOF && n != 0) {
for (int i = 0; i < n; i++) {
scanf("%d%d", &pgm[i].si,&pgm[i].ei);
}
sort(pgm, pgm + n, cmp);
int lasttime = pgm[0].si;
int cnt = 1;
for (int i = 1; i < n; i++) {
if (pgm[i].ei <= lasttime) {
cnt++;
lasttime = pgm[i].si;
}
}
printf("%d\n", cnt);
}
return 0;
}
1128 Problem B 出租车费
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) != EOF && n != 0) {
double fee = 0;
//写好分段函数 也可再直观画图
if (n <= 4)
fee = 10;
else if (n > 4 && n <= 8)
fee = 10 + (n - 4) * 2;
else {
if ((n % 8) <= 4) fee = (n / 8) * 18 + (n % 8)*2.4;
else fee = (n / 8) * 18 + (10 + (n % 8 - 4) * 2);
}
//注意输出格式,用fee-(int)fee==0或fee==(int)fee判断是否是整数
if(fee-(int)fee==0) printf("%d\n", (int)fee);
else printf("%.1f\n", fee);
}
return 0;
}
2031 Problem C To Fill or Not to Fill
PAT 1033 To Fill or Not to Fill (25分)
有两个测试点未通过
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct gasstation {
double pi;
double di;
}gs[510];
bool cmp(gasstation a, gasstation b) {
if (a.di != b.di) return a.di < b.di;
else return a.pi < b.pi;
}
int main() {
double cmax, D, davg;
int N;
while (scanf("%lf %lf %lf %d", &cmax, &D, &davg, &N) != EOF) {
for (int i = 0; i < N; i++) {
scanf("%lf %lf", &gs[i].pi, &gs[i].di);
}
double price = 0;
double discur = 0, ccur = 0, dismax = cmax * davg;
int ncur = 0, unreachable = 0;
sort(gs, gs + N, cmp);
if (gs[0].di != 0) {
printf("The maximum travel distance = %.2lf", discur);
unreachable = 1;
}
else {
while (ncur < N) {
if (ncur == N - 1) {
if (((D - gs[ncur].di) / davg) > cmax) {
printf("The maximum travel distance = %.2lf", discur);
unreachable = 1;
}
else if (ccur >= (D - gs[ncur].di) / davg)
discur = D;
else price += (D - gs[ncur].di) / davg * gs[ncur].pi;
break;
}
if (gs[ncur + 1].di > (discur + dismax)) {
price += gs[ncur].pi*(cmax - ccur);
discur = gs[ncur].di + cmax / davg;
printf("The maximum travel distance = %.2lf\n", discur);
unreachable = 1;
break;
}
int flag = 0;
double pmin = gs[ncur].pi;
int next = ncur + 1;
for (int i = next; i < N && gs[i].di < (gs[ncur].di + dismax); i++) {
if (gs[i].pi < pmin) {
pmin = gs[i].pi;
next = i;
flag = 1;
break;
}
}//找后续加油站中第一个比当前便宜的
if (flag == 0) {
pmin = gs[ncur + 1].pi;
for (int i = next; i < N && gs[i].di < (gs[ncur].di + dismax); i++) {
if (gs[i].pi <= pmin) {
pmin = gs[i].pi;
next = i;
}
}
}
//如果没有就找后续中最便宜的
if (gs[next].pi > gs[ncur].pi) {
price += (cmax - ccur)*gs[ncur].pi;
discur = gs[next].di;
ccur = cmax - (gs[next].di - gs[ncur].di) / davg;
ncur = next;
}//比当前加油站贵,就加满
else {
if (ccur > (gs[next].di - gs[ncur].di) / davg) ncur = next;
else {
price += ((gs[next].di - gs[ncur].di) / davg - ccur) * gs[ncur].pi;
discur = gs[next].di;
ccur = 0;
ncur = next;
}
}//如果比当前加油站便宜,加够跑到下一站
}
if (unreachable == 0)
printf("%.2lf", price);
}
}
return 0;
}
2132 Problem D Repair the Wall
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
bool cmp(int a, int b) {
return a > b;
}
int main() {
int l, n;
while (scanf("%d %d", &l, &n) != EOF) {
int stone[610];
for (int i = 0; i < n; i++)
scanf("%d", &stone[i]);
sort(stone, stone + n, cmp);
int cnt = 0, flag = 0;
for (int i = 0; i < n; i++) {
if (l <= stone[i]) {
cnt++;
flag = 1;
break;
}
else {
l -= stone[i];
cnt++;
}
}
if (flag == 1) printf("%d\n", cnt);
else printf("impossible\n");
}
return 0;
}
2134 Problem E FatMouse’s Trade
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct mouse {
double j;
double f;
double a;
};
bool cmp(mouse s,mouse q) {
return s.a > q.a;
}
int main() {
double m;
int n;
while (scanf("%lf %d", &m, &n) != EOF && m != -1 && n != -1) {
mouse mou[1010];
for (int i = 0; i < n; i++) {
scanf("%lf %lf", &mou[i].j, &mou[i].f);
if (mou[i].f != 0)
mou[i].a = mou[i].j / mou[i].f;
else
mou[i].a = 1000;
}
double aqr = 0.0;
sort(mou, mou + n, cmp);
for (int i = 0; i < n; i++) {
if (m == 0)
break;
if (mou[i].f <= m) {
m -= mou[i].f;
aqr += mou[i].j;
}
else {
aqr += m*1.0 / mou[i].f * mou[i].j;
m = 0;
}
}
printf("%.3lf\n", aqr);
}
return 0;
}
2143 Problem F 迷瘴
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
bool cmp(double a,double b) {
return a < b;
}
int main() {
int c;
scanf("%d", &c);
while (c--) {
int n, v;
double sampw=0, testw=0;
scanf("%d %d %lf", &n, &v, &sampw);
double p[110];
int cnt;
for (int i = 0; i < n; i++)
scanf("%lf", &p[i]);
sort(p, p + n, cmp);
for (cnt = 0; cnt < n; cnt++) {
double temp = 1.0*(testw*cnt + p[cnt]) / (cnt + 1);
if (temp <= sampw) testw = temp;
else break;
}
if (cnt == 0)
printf("0 0.00\n");
else
printf("%d %.2lf\n", cnt*v, testw*0.01);
}
return 0;
}
5038 Problem G 找零钱
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct money {
int coin;
int num;
};
bool cmp(money a, money b)
{
if (a.num == 0 && b.num != 0)
return false;
else if (a.num != 0 && b.num == 0)
return true;
else if (a.num != 0 && b.num != 0)
return a.coin > b.coin;
else
return true;
}
int main() {
int n;
while (scanf("%d", &n) != EOF) {
money mny[5] = { {50,0},{20,0},{10,0},{5,0},{1,0} };
for (int i = 0; i < 5; i++) {
if (n >= mny[i].coin) {
mny[i].num = n / mny[i].coin;
n = n % mny[i].coin;
}
}
sort(mny, mny + 5, cmp);
for (int i = 0; i < 5; i++) {
if (mny[i].num != 0) {
printf("%d*%d", mny[i].coin, mny[i].num);
if (mny[i + 1].num != 0 && i < 4) printf("+");
}
}
printf("\n");
}
return 0;
}