OpenCV跟踪模块算法介绍
OpenCV的tracking模块是一个功能强大的跟踪算法库,包含多种用于跟踪对象的算法。它可以帮助你在连续的视频帧中定位一个物体,例如人脸、眼睛、车辆等。
在OpenCV的tracking模块中,一些主要的跟踪算法包括:
- 稀疏光流(Sparse optical flow):例如Kanade-Lucas-Tomashi (KLT)特征跟踪算法,跟踪图像中几个特征点的位置。
- 卡尔曼滤波(Kalman Filtering):一种非常流行的基于先验运动信息的信号处理算法,用于预测运动目标的位置。这种算法的早期应用之一是导弹制导。
- Meanshift和Camshift:这是定位密度函数最大值的算法,它们还用于跟踪。
单目标跟踪器(Single object trackers):在这类跟踪器中,第一个帧使用矩形标记,以指示要跟踪的对象的位置。然后使用跟踪算法在后续帧中跟踪对象。在大多数实际应用程序中,这些跟踪器与对象检测器一起使用。 - 多目标跟踪查找算法(Multiple object track finding algorithms):当我们有一个快速的目标检测器时,在每一帧中检测多个对象,然后运行一个跟踪查找算法来识别一个帧中的哪个矩形与下一个帧中的矩形相对应是有意义的。
这些算法各有优缺点,可以根据实际应用场景选择适合的算法。
具体调用步骤如下:
- 打开视频帧第一帧
- 框选目标,每选择一个目标按Enter键确认选择
- 按Esc退出框选模式
- 程序执行跟踪算法并绘制预测框
#include <opencv2/opencv.hpp>
#include <opencv2/tracking.hpp>
#include "timestamp.hpp"
using namespace cv;
using namespace std;
//加载静态库
#if defined(_WIN3

本文介绍了OpenCV跟踪模块中的关键算法,如KLT、卡尔曼滤波、Meanshift/Camshift以及不同类型的单目标和多目标追踪器。详细展示了如何在C++中使用这些算法进行对象追踪,包括调用步骤和示例代码。
最低0.47元/天 解锁文章
1597





