Simple Hooking of Functions not Exported by Ntoskrnl.exe

NtOsKrnl非导出函数Hooking
本文介绍了一种Hooking未被NtOsKrnl导出的函数的方法,通过映射ntdll.dll到进程空间并直接从DLL中获取所需函数位置,避免了硬编码位置带来的问题。该方法只需了解PE文件格式及一些未公开API即可实现。
Simple Hooking of Functions not Exported by Ntoskrnl.exe
  By: gareth

 

As many of you will know, hooking functions not exported by ntoskrnl.exe is a real pain, as you need to hard code their position in KeServiceDescriptorTable, and this will change between windows releases.

Hardcoding the positions seems a poor solution, since it means after a new service pack, the rootkit may no longer work and become discovered.

As I have found the code on this site extremely helpful, I think it is only fair that I return the favour ;-)

I have implemented the method described in previous posts, whereby I have mapped a view of ntdll.dll into the process space of whoever loads the driver initially, and then retrieve the required function positions directly from the dll.

This was relatively simple to do, and only requires knowledge of the pe file format, and a few undocumented apis.

Using the function pasted below, when hooking you simply do as follows:


RtlInitUnicodeString(&dllName, L"//Device//HarddiskVolume1//Windows//System32//ntdll.dll");
functionAddress = GetDllFunctionAddress(functionName, &dllName);
position = *((WORD*)(functionAddress+1));
    
g_OriginalZwCreateProcessEx = (ZWCREATEPROCESSEX)(KeServiceDescriptorTable.ServiceTableBase[position]);


and here's the function GetDllFunctionAddress:


DWORD GetDllFunctionAddress(char* lpFunctionName, PUNICODE_STRING pDllName)
{
    HANDLE hThread, hSection, hFile, hMod;
    SECTION_IMAGE_INFORMATION sii;
    IMAGE_DOS_HEADER* dosheader;
    IMAGE_OPTIONAL_HEADER* opthdr;
    IMAGE_EXPORT_DIRECTORY* pExportTable;
    DWORD* arrayOfFunctionAddresses;
    DWORD* arrayOfFunctionNames;
    WORD* arrayOfFunctionOrdinals;
    DWORD functionOrdinal;
    DWORD Base, x, functionAddress;
    char* functionName;
    STRING ntFunctionName, ntFunctionNameSearch;
    PVOID BaseAddress = NULL;
    SIZE_T size=0;

    OBJECT_ATTRIBUTES oa = {sizeof oa, 0, pDllName, OBJ_CASE_INSENSITIVE};

    IO_STATUS_BLOCK iosb;

    //_asm int 3;
    ZwOpenFile(&hFile, FILE_EXECUTE | SYNCHRONIZE, &oa, &iosb, FILE_SHARE_READ, FILE_SYNCHRONOUS_IO_NONALERT);

    oa.ObjectName = 0;

    ZwCreateSection(&hSection, SECTION_ALL_ACCESS, &oa, 0,PAGE_EXECUTE, SEC_IMAGE, hFile);
    
    ZwMapViewOfSection(hSection, NtCurrentProcess(), &BaseAddress, 0, 1000, 0, &size, (SECTION_INHERIT)1, MEM_TOP_DOWN, PAGE_READWRITE);
    
    ZwClose(hFile);
    
    hMod = BaseAddress;
    
    dosheader = (IMAGE_DOS_HEADER *)hMod;
    
    opthdr =(IMAGE_OPTIONAL_HEADER *) ((BYTE*)hMod+dosheader->e_lfanew+24);

    pExportTable =(IMAGE_EXPORT_DIRECTORY*)((BYTE*) hMod + opthdr->DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT]. VirtualAddress);

    // now we can get the exported functions, but note we convert from RVA to address
    arrayOfFunctionAddresses = (DWORD*)( (BYTE*)hMod + pExportTable->AddressOfFunctions);

    arrayOfFunctionNames = (DWORD*)( (BYTE*)hMod + pExportTable->AddressOfNames);

    arrayOfFunctionOrdinals = (WORD*)( (BYTE*)hMod + pExportTable->AddressOfNameOrdinals);

    Base = pExportTable->Base;

    RtlInitString(&ntFunctionNameSearch, lpFunctionName);

    for(x = 0; x < pExportTable->NumberOfFunctions; x++)
    {
        functionName = (char*)( (BYTE*)hMod + arrayOfFunctionNames[x]);

        RtlInitString(&ntFunctionName, functionName);

        functionOrdinal = arrayOfFunctionOrdinals[x] + Base - 1; // always need to add base, -1 as array counts from 0
        // this is the funny bit.  you would expect the function pointer to simply be arrayOfFunctionAddresses[x]...
        // oh no... thats too simple.  it is actually arrayOfFunctionAddresses[functionOrdinal]!!
        functionAddress = (DWORD)( (BYTE*)hMod + arrayOfFunctionAddresses[functionOrdinal]);
        if (RtlCompareString(&ntFunctionName, &ntFunctionNameSearch, TRUE) == 0)
        {
            ZwClose(hSection);
            return functionAddress;
        }
    }

    ZwClose(hSection);
    return 0;
}


Hopefully this will be useful to you.
内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值