在VS2013平台下,调用armadillo线性代数库实现《机器学习实战》第5章的算法。算法的原理和数学推导请参考书籍或相关博客http://blog.youkuaiyun.com/zouxy09/article/details/20319673。
由于在C++控制台上不易画图,这里将训练好的权值保存到.txt文档中,在保存目录下建立一个.m脚本用matlab展示可视化效果。
C++代码
这里函数的功能和命名均与《机器学习实战》中的函数保持高度一致
#include "stdafx.h"
#include "armadillo"
#include <iostream>
using namespace arma;
using namespace std;
//加载数据
bool loadDataSet(mat &dataMat,vec & labelVec)
{
bool openSuccess = true;
dataMat = ones<mat>(500, 3);
labelVec = zeros<vec>(500);
fstream in("D:\\TestCode\\Machine-Learning-In-Action\\Chapter5\\testSet.txt");
if (!in.is_open())
{
openSuccess = false;
return openSuccess;
}
int dataNum = 0; //数字总数
while (!in.eof())
{
dataNum++;
int rowNum = int(dataNum / 3);//应分配的行,从0行开始
int colNum = int(dataNum % 3);//应分配的列
if (colNum != 0)
{
in >> dataMat(rowNum, colNum);
}
else
{
in >> labelVec(rowNum - 1);//(分析:当dataNum=3时rowNum=1,但此时应为第0行的标签)
}
}
//截取矩阵中有数据部分
int linesNum = int(dataNum / 3);
dataMat = dataMat.rows(0, linesNum - 1);
labelVec = labelVec.rows(0, linesNum - 1);
return openSuccess;
}
//sigmoid行数,输入和返回值都是列向量
vec sigmoid(vec inX)
{
return 1.0 / (1.0 +exp(-inX));
}
//梯度上升函数(批处理)
vec gradAscent(mat dataMatIn, vec classLabels)
{
double alpha = 0.001;//梯度上升步长
int maxCycles = 500;//最大循环次数
int cols = dataMatIn.n_cols;//每个样本的特征数
vec weights = ones<vec>(cols);//形成初始权值,全为1
for (size_t i = 0; i < maxCycles; i++)
{
vec h = sigmoid(dataMatIn*weights);
vec error = (classLabels - h);
weights = weights + alpha * dataMatIn.t()*error;
}
return weights;
}
//随机梯度上升算法
vec stocGradAscent(mat dataMatIn, vec classLabels)
{
double alpha = 0.01;
int cols = dataMatIn.n_cols;//每个样本的特征数
int rows = dataMatIn.n_rows;//样本个数
vec weights = ones(cols);//初始权值
for (size_t i = 0; i < rows; i++)
{
vec h = sigmoid(dataMatIn.row(i)*weights);//起始只有一个值,标量
vec error = classLabels(i) - h;
weights = weights + alpha*dataMatIn.row(i).t()*error;
}
return weights;
}
//改进的随机梯度上升算法
vec stocGradAscent1(mat dataMatIn, vec classLables, int numIter = 150)
{
int cols = dataMatIn.n_cols;//每个样本的特征数
int rows = dataMatIn.n_rows;//样本个数
vec weights = ones(cols);//初始权值
for (int j = 0; j < numIter; j++)
{
uvec dataIndex = linspace<uvec>(0, rows - 1, rows);//产生0到rows-1的序列
for (int i = 0; i < rows; i++)
{
double alpha = 4.0 / (1.0 + i + j) + 0.01;//改进处1:逐渐减小的步长
int randIndex = rand() % (dataIndex.n_elem);//产生一个随机数
vec h = sigmoid(dataMatIn.row(randIndex)*weights);//起始只有一个值,标量
double error = classLables(randIndex) - h(0);
weights = weights + alpha*dataMatIn.row(randIndex).t()*error;
dataIndex.shed_row(randIndex);
}
}
return weights;
}
int _tmain(int argc, _TCHAR* argv[])
{
mat dataSet;
vec labelVec;
bool success = loadDataSet(dataSet, labelVec);
//vec weight = gradAscent(dataSet, labelVec);//批处理梯度上升
//vec weight = stocGradAscent(dataSet, labelVec);//随机梯度上升算法
vec weight = stocGradAscent1(dataSet, labelVec);//改进的随机梯度上升算法
weight.print("weight");
//将训练好的权值存到weight.txt中,以供matlab绘图
fstream out("D:\\TestCode\\Machine-Learning-In-Action\\Chapter5\\weight.txt",ios_base::out);
for (int i = 0; i < weight.n_rows; i++)
{
out << weight(i)<<" ";
}
uvec a = linspace<uvec>(0, 4, 5);
system("pause");
return 0;
}
Matlab绘图脚本
%% 从txt中读取数据并绘图
testSet = importdata('testSet.txt');
weight = importdata('weight.txt');
testSet_x0 = testSet((testSet(:,3) < 1),1); %提取标签为0的x
testSet_y0 = testSet((testSet(:,3) < 1),2); %提取标签为0的y
testSet_x1 = testSet((testSet(:,3) > 0),1); %提取标签为1的x
testSet_y1 = testSet((testSet(:,3) > 0),2); %提取标签为1的y
%% 绘图
plot(testSet_x0,testSet_y0,'bo');
hold on;
plot(testSet_x1,testSet_y1,'r*');
hold on;
Xrange= minmax(testSet(:,1)');% x的分布范围
x = Xrange(1)-0.5 : 0.2 : Xrange(2)+0.5;
y = (-weight(1,1)-weight(1,2)*x)/weight(1,3);
plot(x,y);
xlabel('x');
ylabel('y');
legend('0','1');
算法效果
1.调用批处理梯度上升
2.调用随机梯度上升
3.调用改进的随机梯度上升