happy_faces.h

 
import cv2 import torch import numpy as np from statistics import mode import image_standardization as isd from model_CNN import MyCNN from model_CNN import CNN detection_model_path = 'trained_model/haarcascade_frontalface_default.xml' model_path = 'trained_model/model_CNN.pkl' face_detection = cv2.CascadeClassifier(detection_model_path) detection_model = torch.load(model_path, map_location=torch.device('cpu')) frame_window = 10 emotion_labels = {0: 'angry', 1: 'disgust', 2: 'fear', 3: 'happy', 4: 'sad', 5: 'surprise', 6: 'neutral'} emotion_window = [] video_capture = cv2.VideoCapture(0) font = cv2.FONT_HERSHEY_SIMPLEX cv2.startWindowThread() cv2.namedWindow('window_frame') while True: # 读取一帧 _, frame = video_capture.read() frame = frame[:, ::-1, :] # 水平翻转,符合自拍习惯 frame = frame.copy() # 获得灰度图,并且在内存中创建一个图像对象 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 获取当前帧中的全部人脸 faces = face_detection.detectMultiScale(gray, 1.3, 5) # 对于所有发现的人脸 for (x, y, w, h) in faces: # 在脸周围画一个矩形框,(255,0,0)是颜色,2是线宽 cv2.rectangle(frame, (x, y), (x + w, y + h), (84, 255, 159), 2) # 获取人脸图像 face = gray[y:y + h, x:x + w] face = cv2.resize(face, (48, 48)) # 扩充维度,转换成为(1,1,48,48) face = np.expand_dims(face, 0) face = np.expand_dims(face, 0) # 人脸数据归一化,将像素值从0-255映射到0-1之间 face = isd.preprocess_input(face) new_face = torch.from_numpy(face) new_new_face = new_face.float().requires_grad_(False) # 调用我们训练好的表情识别模型,预测分类 # np.argmax()是numpy中获取array的某一个维度中数值最大的那个元素的索引 # emotion_arg得到的是一个数字,按照表情顺序排好的数字 emtion_all_proprobability = detection_model.forward(new_new_face).detach().numpy() emotion_arg = np.argmax(emtion_all_proprobability) # 获取数字对应的表情 emotion = emotion_labels[emotion_arg] emotion_window.append(emotion) if len(emotion_window) >= frame_window: emotion_window.pop(0) try: # 获得出现次数最多的分类 emotion_mode = mode(emotion_window) except: continue # 在矩形框上部,输出分类文字 cv2.putText(frame, emotion_mode, (x, y - 30), font, .7, (0, 0, 255), 1, cv2.LINE_AA) try: # 将图片从内存中显示到屏幕上 cv2.imshow('window_frame', frame) except: continue # 按q退出 if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()这段代码出现了上述错误我应该如何修改
05-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值