简单的线段树模拟,首先统计最终有多少数,建好线段树之后,相当于做修改查询操作,注意到查询操作查询的区间为
(len - L + 1, len ) len 为当前数列的长度
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1e6 + 10;
struct SegmentTree { int l,r,max1,min1,flag; LL sum;}tree[maxn<<2];
int num[maxn];
int M,mod;
void pushup(int id){
tree[id].max1 = max(tree[id<<1].max1,tree[id<<1|1].max1);
}
void pushdown(int id){
if (tree[id].flag){
tree[id<<1].max1 += tree[id].flag;
tree[id<<1|1].max1 += tree[id].flag;
tree[id<<1].flag += tree[id].flag;
tree[id<<1|1].flag += tree[id].flag;
tree[id].flag = 0;
}
}
void build(int id,int l,int r){
tree[id].l = l;
tree[id].r = r;
if (l == r) {
tree[id].max1 = num[l];
return;
}
int mid = (l + r) >> 1;
build(id<<1, l, mid);
build(id<<1|1, mid+1, r);
pushup(id);
}
int query(int id,int ql,int qr){ // max
int l = tree[id].l,r = tree[id].r;
if (l == ql && r == qr)
return tree[id].max1;
if (l == r) return tree[id].max1;
int mid = (l + r) >> 1;
pushdown(id);
if (qr <= mid) return query(id<<1, ql, qr);
else if (ql > mid) return query(id<<1|1, ql, qr);
else return max(query(id<<1, ql, mid),query(id<<1|1, mid+1, qr));
}
void update(int id,int ql,int qr,int c){
int l = tree[id].l,r = tree[id].r;
if (ql <= l && r <= qr){
tree[id].max1 += c;
tree[id].flag += c;
return;
}
pushdown(id);
int mid = (l + r) >> 1;
if (qr <= mid) update(id<<1 ,ql, qr, c);
else if (ql >= mid+1) update(id<<1|1, ql, qr, c);
else{
update(id<<1, ql, mid, c);
update(id<<1|1, mid+1, qr, c);
}
pushup(id);
}
char opt[maxn][2];
int n[maxn],L[maxn];
int main(){
// freopen("/Users/chutong/data.txt", "r", stdin);
scanf("%d%d",&M,&mod);
int tot = 1,t = 0;
for (int i=1; i<=M; i++) {
scanf("%s",opt[i]);
if (opt[i][0] == 'A') {
scanf("%d",&n[i]); tot++;
}else{
scanf("%d",&L[i]);
}
}
build(1, 1, tot); tot = 1;
for (int i=1; i<=M; i++) {
if (opt[i][0] == 'A'){
update(1, tot, tot, (n[i]+t) % mod);
tot++;
}else{
t = query(1, tot-L[i], tot-1);
printf("%d\n",t);
}
}
return 0;
}