Deep Q-Networks (DQN)算法

简介

Deep Q-Networks (DQN) 是一种结合了深度学习和强化学习的算法,用于解决 马尔可夫决策过程 (MDP) 问题。它是 Q-Learning 的扩展,通过引入神经网络来近似 Q 值函数,从而能够处理高维状态空间(如图像输入)。DQN 由 DeepMind 在 2013 年提出,并在 2015 年通过改进版本在 Atari 游戏中取得了超越人类的表现。

代码

import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from collections import deque
import random

# 定义神经网络
class DQN(nn.Module):
    def __init__(self, state_size, action_size):
        super(DQN, self).__init__()
        self.fc1 = nn.Linear(state_size, 24)
        self.fc2 = nn.Linear(24, 24)
        self.fc3 = nn.Linear(24, action_size)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x)

# 定义DQN代理
class DQNAgent:
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.memory = deque(maxlen=2000)
        self.gamma = 0.95  # 折扣因子
        self.epsilon = 1.0  # 探索率
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.learning_rate = 0.001
        self.model = DQN(state_size, action_size)
        self.optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)

    def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next_state, done))

    def act(self, state):
        if np.random.rand() <= self.epsilon:
            return random.randrange(self.action_size)
        state = torch.FloatTensor(state)
        act_values = self.model(state)
        return torch.argmax(act_values).item()

    def replay(self, batch_size):
        minibatch = random.sample(self.memory, batch_size)
        for state, action, reward, next_state, done in minibatch:
            state = torch.FloatTensor(state)
            next_state = torch.FloatTensor(next_state)
            target = reward
            if not done:
                target = reward + self.gamma * torch.max(self.model(next_state)).item()
            target_f = self.model(state)
            target_f = target_f.squeeze(0)  # 将形状从 [1, action_size] 变为 [action_size]
            target_f[action] = target
            self.optimizer.zero_grad()
            loss = F.mse_loss(self.model(state), target_f.unsqueeze(0))  # 恢复形状为 [1, action_size]
            loss.backward()
            self.optimizer.step()
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

    def load(self, name):
        self.model.load_state_dict(torch.load(name))

    def save(self, name):
        torch.save(self.model.state_dict(), name)

# 初始化环境和代理
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
batch_size = 32
episodes = 1000

# 训练循环
for e in range(episodes):
    state = env.reset()
    state = np.reshape(state, [1, state_size])
    for time in range(500):
        action = agent.act(state)
        next_state, reward, done, _ = env.step(action)
        next_state = np.reshape(next_state, [1, state_size])
        agent.remember(state, action, reward, next_state, done)
        state = next_state
        if done:
            print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2f}")
            break
    if len(agent.memory) > batch_size:
        agent.replay(batch_size)

# 保存模型
agent.save("cartpole-dqn.pth")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值