简介
Deep Q-Networks (DQN) 是一种结合了深度学习和强化学习的算法,用于解决 马尔可夫决策过程 (MDP) 问题。它是 Q-Learning 的扩展,通过引入神经网络来近似 Q 值函数,从而能够处理高维状态空间(如图像输入)。DQN 由 DeepMind 在 2013 年提出,并在 2015 年通过改进版本在 Atari 游戏中取得了超越人类的表现。
代码
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from collections import deque
import random
# 定义神经网络
class DQN(nn.Module):
def __init__(self, state_size, action_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_size, 24)
self.fc2 = nn.Linear(24, 24)
self.fc3 = nn.Linear(24, action_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
# 定义DQN代理
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # 折扣因子
self.epsilon = 1.0 # 探索率
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = DQN(state_size, action_size)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
state = torch.FloatTensor(state)
act_values = self.model(state)
return torch.argmax(act_values).item()
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
state = torch.FloatTensor(state)
next_state = torch.FloatTensor(next_state)
target = reward
if not done:
target = reward + self.gamma * torch.max(self.model(next_state)).item()
target_f = self.model(state)
target_f = target_f.squeeze(0) # 将形状从 [1, action_size] 变为 [action_size]
target_f[action] = target
self.optimizer.zero_grad()
loss = F.mse_loss(self.model(state), target_f.unsqueeze(0)) # 恢复形状为 [1, action_size]
loss.backward()
self.optimizer.step()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_state_dict(torch.load(name))
def save(self, name):
torch.save(self.model.state_dict(), name)
# 初始化环境和代理
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
batch_size = 32
episodes = 1000
# 训练循环
for e in range(episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2f}")
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
# 保存模型
agent.save("cartpole-dqn.pth")