一.SPI介绍
以下SPI介绍是我通过学习B站up主江科大的笔记。
1.SPI通信
2硬件电路
3.移位示意图
语法说明
标题文本样式列表图片链接目录代码片表格注脚注释自定义列表LaTeX 数学公式插入甘特图插入UML图插入Mermaid流程图插入Flowchart流程图插入类图快捷键
标题复制
4.基本时序
5.时序基本单元
二.NRF24L01
下面资料我是在正点原子学习资料下面找的。
1.与stm32接线
- VCC脚接电压范围为1.9V~3.6V之间,不能在这个区间之外,超
过3.6V将会烧毁模块。推荐电压3.3V左右。
(2) 除电源VCC和接地端,其余脚都可以直接和普通的5V单片机IO口
直接相连,无需电平转换。当然对3V左右的单片机更加适用了。
(3) 硬件上面没有SPI的单片机也可以控制本模块,用普通单片机IO
口模拟SPI不需要单片机真正的串口介入,只需要普通的单片机IO口
就可以了,当然用串口也可以了。
2.配置Cubemax
1.然后SPI选用全双工,方便使用。
2.根据前面的SPI介绍,我们知道,为了使SPI引脚信号上升和下降迅速,我们使用强有力的推挽输出。
3…IRQ 中断信号引脚。中断时变为低电平,即NRF24L01内部发生中断时IRQ 引脚从高电平变为低电平。所以默认配置为上拉输入。
3.程序设计
首先是2.4g的驱动代码,这里面可以按照需求,当前是一对一模式下的代码,其中接受的地址是0x34,0x43,0x10,0x10,0x01,一共可以使用6个通道,我目前只使用了一个。
#include "nrf24L01.h"
#include "spi.h"
const uint8_t TX_ADDRESS[TX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01}; //发送地址
const uint8_t RX_ADDRESS[RX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01}; //接收地址
/**
* 函数功能: 往串行Flash读取写入一个字节数据并接收一个字节数据
* 输入参数: byte:待发送数据
* 返 回 值: uint8_t:接收到的数据
* 说 明:无
*/
uint8_t SPIx_ReadWriteByte(SPI_HandleTypeDef* hspi,uint8_t byte)
{
uint8_t d_read,d_send=byte;
if(HAL_SPI_TransmitReceive(hspi,&d_send,&d_read,1,0xFF)!=HAL_OK)
{
d_read=0xFF;
}
return d_read;
}
/**
* 函数功能: 检测24L01是否存在
* 输入参数: 无
* 返 回 值: 0,成功;1,失败
* 说 明:无
*/
uint8_t NRF24L01_Check(void)
{
uint8_t buf[5]={0XA5,0XA5,0XA5,0XA5,0XA5};
uint8_t i;
NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,buf,5);//写入5个字节的地址.
NRF24L01_Read_Buf(TX_ADDR,buf,5); //读出写入的地址
for(i=0;i<5;i++)if(buf[i]!=0XA5)break;
if(i!=5)return 1; //检测24L01错误
return 0; //检测到24L01
}
/**
* 函数功能: SPI写寄存器
* 输入参数: 无
* 返 回 值: 无
* 说 明:reg:指定寄存器地址
*
*/
uint8_t NRF24L01_Write_Reg(uint8_t reg,uint8_t value)
{
uint8_t status;
NRF24L01_SPI_CS_ENABLE(); //使能SPI传输
status =SPIx_ReadWriteByte(&hspi2,reg); //发送寄存器号
SPIx_ReadWriteByte(&hspi2,value); //写入寄存器的值
NRF24L01_SPI_CS_DISABLE(); //禁止SPI传输
return(status); //返回状态值
}
/**
* 函数功能: 读取SPI寄存器值
* 输入参数: 无
* 返 回 值: 无
* 说 明:reg:要读的寄存器
*
*/
uint8_t NRF24L01_Read_Reg(uint8_t reg)
{
uint8_t reg_val;
NRF24L01_SPI_CS_ENABLE(); //使能SPI传输
SPIx_ReadWriteByte(&hspi2,reg); //发送寄存器号
reg_val=SPIx_ReadWriteByte(&hspi2,0XFF);//读取寄存器内容
NRF24L01_SPI_CS_DISABLE(); //禁止SPI传输
return(reg_val); //返回状态值
}
/**
* 函数功能: 在指定位置读出指定长度的数据
* 输入参数: 无
* 返 回 值: 此次读到的状态寄存器值
* 说 明:无
*
*/
uint8_t NRF24L01_Read_Buf(uint8_t reg,uint8_t *pBuf,uint8_t len)
{
uint8_t status,uint8_t_ctr;
NRF24L01_SPI_CS_ENABLE(); //使能SPI传输
status=SPIx_ReadWriteByte(&hspi2,reg);//发送寄存器值(位置),并读取状态值
for(uint8_t_ctr=0;uint8_t_ctr<len;uint8_t_ctr++)
{
pBuf[uint8_t_ctr]=SPIx_ReadWriteByte(&hspi2,0XFF);//读出数据
}
NRF24L01_SPI_CS_DISABLE(); //关闭SPI传输
return status; //返回读到的状态值
}
/**
* 函数功能: 在指定位置写指定长度的数据
* 输入参数: 无
* 返 回 值: 无
* 说 明:reg:寄存器(位置) *pBuf:数据指针 len:数据长度
*
*/
uint8_t NRF24L01_Write_Buf(uint8_t reg, uint8_t *pBuf, uint8_t len)
{
uint8_t status,uint8_t_ctr;
NRF24L01_SPI_CS_ENABLE(); //使能SPI传输
status = SPIx_ReadWriteByte(&hspi2,reg);//发送寄存器值(位置),并读取状态值
for(uint8_t_ctr=0; uint8_t_ctr<len; uint8_t_ctr++)
{
SPIx_ReadWriteByte(&hspi2,*pBuf++); //写入数据
}
NRF24L01_SPI_CS_DISABLE(); //关闭SPI传输
return status; //返回读到的状态值
}
/**
* 函数功能: 启动NRF24L01发送一次数据
* 输入参数: 无
* 返 回 值: 发送完成状况
* 说 明:txbuf:待发送数据首地址
*
*/
uint8_t NRF24L01_TxPacket(uint8_t *txbuf)
{
uint8_t sta;
NRF24L01_CE_LOW();
NRF24L01_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH);//写数据到TX BUF 32个字节
NRF24L01_CE_HIGH();//启动发送
while(NRF24L01_IRQ_PIN_READ()!=0);//等待发送完成
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&MAX_TX)//达到最大重发次数
{
NRF24L01_Write_Reg(FLUSH_TX,0xff);//清除TX FIFO寄存器
return MAX_TX;
}
if(sta&TX_OK)//发送完成
{
return TX_OK;
}
return 0xff;//其他原因发送失败
}
/**
* 函数功能:启动NRF24L01接收一次数据
* 输入参数: 无
* 返 回 值: 无
* 说 明:无
*
*/
uint8_t NRF24L01_RxPacket(uint8_t *rxbuf)
{
uint8_t sta;
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&RX_OK)//接收到数据
{
NRF24L01_Read_Buf(RD_RX_PLOAD,rxbuf,RX_PLOAD_WIDTH);//读取数据
NRF24L01_Write_Reg(FLUSH_RX,0xff);//清除RX FIFO寄存器
return 0;
}
return 1;//没收到任何数据
}
/**
* 函数功能: 该函数初始化NRF24L01到RX模式
* 输入参数: 无
* 返 回 值: 无
* 说 明:无
*
*/
void NRF24L01_RX_Mode(void)
{
NRF24L01_CE_LOW();
NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG, 0x0F);//配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01);//使能通道0的接收地址
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40); //设置RF通信频率
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f);//设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(NRF_WRITE_REG+RX_PW_P0,RX_PLOAD_WIDTH);//选择通道0的有效数据宽度
NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(uint8_t*)RX_ADDRESS,RX_ADR_WIDTH);//写RX节点地址
NRF24L01_CE_HIGH(); //CE为高,进入接收模式
HAL_Delay(1);
}
/**
* 函数功能: 该函数初始化NRF24L01到TX模式
* 输入参数: 无
* 返 回 值: 无
* 说 明:无
*
*/
void NRF24L01_TX_Mode(void)
{
NRF24L01_CE_LOW();
NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,(uint8_t*)TX_ADDRESS,TX_ADR_WIDTH);//写TX节点地址
NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(uint8_t*)RX_ADDRESS,RX_ADR_WIDTH); //设置TX节点地址,主要为了使能ACK
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01); //使能通道0的接收地址
NRF24L01_Write_Reg(NRF_WRITE_REG+SETUP_RETR,0xff);//设置自动重发间隔时间:4000us + 86us;最大自动重发次数:15次
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40); //设置RF通道为40
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f); //设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG,0x0e); //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式,开启所有中断
NRF24L01_CE_HIGH();//CE为高,10us后启动发送
HAL_Delay(1);
}
/**
* 函数功能: 该函数NRF24L01进入低功耗模式
* 输入参数: 无
* 返 回 值: 无
* 说 明:无
*
*/
void NRF_LowPower_Mode(void)
{
NRF24L01_CE_LOW();
NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG, 0x00); //配置工作模式:掉电模式
}
发送端
HAL_Delay(200);
while(NRF24L01_Check()) //检测NRF24L01是否存在
{
printf("Error \n ");
}
NRF24L01_TX_Mode();
uint8_t tx_buf[33] = "cyf";
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(NRF24L01_TxPacket(tx_buf) == MAX_TX)
{
printf("发送成功 数据为 %s \r\n",tx_buf);
}
接受端
while (NRF24L01_Check() ){
}
NRF24L01_RX_Mode();
uint8_t rx_buf[32];
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(NRF24L01_RxPacket(rx_buf) == 0)
{
printf("成功接受数据为 %s \r\n",rx_buf);
}
最后的效果如下: