0x01 前言
基于netty动态创建pipeline的特性,其内存马的构造思路与tomcat有一定的区别,目前网上有关netty内存马的文章都围绕CVE-2022-22947和XXL-JOB两种场景展开,并未对其做更为详细的分析。本文就以上述两种场景为始,尝试从源码角度探究netty内存马的部分细节,以供大家参考。
0x02 Netty介绍
I/O事件:分为出站和入站两种事件,不同的事件会触发不同种类的handler。
Handler (ChannelHandler):handler用于处理I/O事件,继承如下几种接口,并重写channelRead方法完成请求的处理,功能类似于filter。
ChannelInboundHandlerAdapter 入站I/O事件触发该handlerChannelOutboundHandlerAdapter 出站I/O事件触发该handlerChannelDuplexHandler 入站和出站事件均会触发该handler
Channel (SocketChannel):可以理解为对 Socket 的封装, 提供了 Socket 状态、读写等操作,每当 Netty 建立了一个连接后,都会创建一个对应的 Channel 实例,同时还会初始化和 Channel 所对应的 pipeline。
Pipeline (ChannelPipeline):由多个handler所构成的双向链表,并提供如addFirst、addLast等方法添加handler。需要注意的是,每次有新请求入站时,都会创建一个与之对应的channel,同时channel会在io.netty.channel.AbstractChannel#AbstractChannel(io.netty.channel.Channel)里创建一个与之对应的pipeline。

构造netty内存马的一个思路,就是在pipeline中插入我们自定义的handler,同时,由于pipeline动态创建的特性,如何保证handler的持久化才是关键,本文以此为出发点,尝试探究netty内存马在不同场景下的利用原理。
0x03 CVE-2022-22947
先来简单回顾一下CVE-2022-22947是如何注入内存马的,文中的核心是修改reactor.netty.transport.TransportConfig#doOnChannelInit,在reactor.netty中,channel的初始化位于reactor.netty.transport.TransportConfig.TransportChannelInitializer#initChannel。
关键点如下:

config.defaultOnChannelInit()返回一个默认的ChannelPipelineConfigurer,随后调用then方法,进入到reactor.netty.ReactorNetty.CompositeChannelPipelineConfigurer#compositeChannelPipelineConfigurer,从函数名也能够看出,这个方法用于合并对象,将当前默认的ChannelPipelineConfigurer与config.doOnChannelInit合二为一,返回一个CompositeChannelPipelineConfigurer。
随后调用CompositeChannelPipelineConfigurer#onChannelInit,在此处循环调用configurer#onChannelInit,其中就包括我们反射传入的doOnChannelInit#onChannelInit。

c0ny1师傅给出的案例,就在onChannelInit内完成handler的添加,由于反射修改了doOnChannelInit,后续有新的请求入站,都会重复上述流程,进而完成handler的持久化。
public void onChannelInit(ConnectionObserver connectionObserver, Channel channel, SocketAddress socketAddress) {ChannelPipeline pipeline = channel.pipeline();pipeline.addBefore("reactor.left.httpTrafficHandler","memshell_handler",new NettyMemshell());}
另外,从reactor.netty.transport.TransportConfig#doOnChannelInit的路径也能看出,该场景依赖 reactor.netty,并不适用纯io.netty的环境,如xxl-job等场景。
0x04 XXL-JOB
对于纯粹的io.netty环境,在XXL-JOB内存马中给出的答案是定制化内存马,核心思想是修改com.xxl.job.core.biz.impl.ExecutorBizImpl的实现,由于每次请求都会触发ServerBootstrap初始化流程,随即进入.addLast(new EmbedHttpServerHandler(executorBiz, accessToken, bizThreadPool));,而EmbedServer中的executorBiz在仅在启动时触发实例化,在整个应用程序的生命周期中都不变,使用动态类加载替换其实现,就能完成内存马的持久化。

在文章开头,作者也曾尝试反射调用pipeline.addBefore,依然是上面所提到的问题,不过很容易发现,通过ServerBootstrap所添加的EmbedHttpServerHandler能够常驻内存,如果我们想要利用这一特性,还需进一步分析io.netty.bootstrap.ServerBootstrap的初始化过程。
0x05 ServerBootstrap
限于篇幅,这里仅截取关键代码,直接定位到pipeline创建完成之后的片段,首先io.netty.bootstrap.ServerBootstrap#init在pipeline中添加了一个ServerBootstrapAcceptor,需要注意一下这里的childHandler,这也是一种持久化的思路,后续会继续提到。

此时pipeline在内存中的情况如下,可以看到已经添加了ServerBootstrapAcceptor。

netty介绍部分提及过handler的channelRead方法用于处理请求,因此可以直接去看io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead的实现,这里ServerBootstrapAcceptor把之前传入的childHandler添加到pipeline中。

childHandler由开发者所定义,通常会使用如下范式定义ServerBootStrap,也就是添加客户端连接时所需要的handler。
ServerBootstrap bootstrap = new ServerBootstrap();bootstrap.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).childHandler(new ChannelInitializer<SocketChannel>() {@Overridepublic void initChannel(SocketChannel channel) throws Exception {channel.pipeline().addLast(...).addLast(...);}})
由开发者所定义的ChannelInitializer最终会走到ChannelInitializer#initChannel进行初始化,调用栈如下:

总结一下该流程,每次请求都将触发一次ServerBootstrap初始化,随即pipeline根据现有的ChannelInitializer#initChannel添加其他handler,若能根据这一特性找到ServerBootstrapAcceptor,反射修改childHandler,也完成handler持久化这一目标。
0x06 内存马实现
在探究netty的过程中,发现这样一篇文章: xxl-job利用研究,作者给出的EXP已经很接近完整版了,在文章的最后抛出两个问题,一是"注册的handler必须加上@ChannelHandler.Sharable标签,否则会执行器会报错崩溃",二是"坏消息是这个内存马的实现是替换了handler,所以原本执行逻辑会消失,建议跑路前重启一下执行器"。
这两个问题很容易解决:
1、对于需要加入@ChannelHandler.Sharable这点而言,实测是不需要的,由于我们自定义的handler是通过new的方式创建的,理论上来讲就是unSharable的。
2、反射修改ChannelInitializer导致执行器失效的问题,只需要给bootstrap添加一个EmbedHttpServerHandler就能保留其原有功能。

最低0.47元/天 解锁文章
555

被折叠的 条评论
为什么被折叠?



