[CodeForces 439E] Devu and Birthday Celebration(莫比乌斯反演) | 错题本

本文详细解析了CodeForces439E题目“Devu and Birthday Celebration”的解决方案,介绍了莫比乌斯函数的重要性质及其在解决此题中的应用。通过预处理莫比乌斯函数并结合隔板法,实现了一个高效的算法。

文章目录

题目

[CodeForces 439E] Devu and Birthday Celebration

分析

莫比乌斯函数比较重要的性质: μ ∗ 1 = ε \mu * 1 = \varepsilon μ1=ε ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d | n}\mu(d) = [n = 1] dnμ(d)=[n=1]

证明:
n = ∏ i = 1 m p i α i n = \prod_{i = 1}^{m} p_i^{\alpha_i} n=i=1mpiαi n ′ = ∏ i = 1 m p i n' = \prod_{i = 1}^mp_i n=i=1mpi,有 ∑ d ∣ n μ ( d ) = ∑ d ∣ n ′ μ ( d ) = ∑ i = 0 m ( m i ) ( − 1 ) i \sum_{d | n}\mu(d) = \sum_{d | n'}\mu(d) = \sum_{i = 0}^{m} \binom{m}{i} (-1)^i dnμ(d)=dnμ(d)=i=0m(im)(1)i 由二项式定理,当 n = 1 n = 1 n=1 时,上式为 1 1 1;当 n ≠ 1 n \neq 1 n=1 时,上式为 [ 1 + ( − 1 ) ] m = 0 [1 + (-1)]^m = 0 [1+(1)]m=0

∑ a 1 = 1 n ∑ a 2 = 1 n ⋯ ∑ a f = 1 n [ ∑ i = 1 f a i = n ] [ gcd ⁡ i = 1 f a i = 1 ] = ∑ a 1 = 1 n ∑ a 2 = 1 n ⋯ ∑ a f = 1 n [ ∑ i = 1 f a i = n ] ∑ d ∣ gcd i = 1 f a i μ ( d ) = ∑ d ∣ n μ ( d ) ∑ k 1 = 1 n d ∑ k 2 = 1 n d ⋯ ∑ k f = 1 n d [ ∑ i = 1 f k i = n d ] \begin{aligned} &\sum_{a_1 = 1}^n \sum_{a_2 = 1}^n \cdots \sum_{a_f = 1}^n \left[\sum_{i = 1}^fa_i = n\right] \left[\gcd_{i = 1}^f a_i = 1\right] \\ =& \sum_{a_1 = 1}^n \sum_{a_2 = 1}^n \cdots \sum_{a_f = 1}^n \left[\sum_{i = 1}^f a_i = n\right] \sum_{d |\text{gcd}_{i = 1}^f a_i} \mu(d) \\ =& \sum_{d | n} \mu(d) \sum_{k_1 =1}^{\frac{n}{d}} \sum_{k_2 =1}^{\frac{n}{d}} \cdots \sum_{k_f =1}^{\frac{n}{d}} \left[\sum_{i = 1}^f k_i = \frac{n}{d} \right]\end{aligned} ==a1=1na2=1naf=1n[i=1fai=n][i=1gcdfai=1]a1=1na2=1naf=1n[i=1fai=n]dgcdi=1faiμ(d)dnμ(d)k1=1dnk2=1dnkf=1dn[i=1fki=dn](转换枚举方式, a i = d ⋅ k i a_i = d\cdot k_i ai=dki,由于 d ∣ a i d | a_i dai,所以 d ∣ ∑ i = 1 f a i d | \sum_{i = 1}^f a_i di=1fai d ∣ n d | n dn

预处理莫比乌斯函数,然后 O ( n ) O(\sqrt{n}) O(n ) 枚举因数 + 隔板法即可。

代码

#include <bits/stdc++.h>

typedef long long LL;

template <const int _MOD> struct ModNumber {
    int x;
    inline ModNumber() { x = 0; }
    inline ModNumber(const int &y) { x = y; }
    inline int Int() { return x; }
    inline ModNumber Pow(int y) const { register int ret = 1, tmp = x; while (y) { if (y & 1) ret = ((LL)ret * tmp) % _MOD; y >>= 1; tmp = ((LL)tmp * tmp) % _MOD; } return ModNumber(ret); }
    inline bool operator == (const ModNumber &y) const { return x == y.x; }
    inline bool operator != (const ModNumber &y) const { return x != y.x; }
    inline bool operator < (const ModNumber &y) const { return x < y.x; }
    inline bool operator > (const ModNumber &y) const { return x > y.x; }
    inline bool operator <= (const ModNumber &y) const { return x <= y.x; }
    inline bool operator >= (const ModNumber &y) const { return x >= y.x; }
    inline ModNumber operator - () const { return _MOD - x; }
    inline ModNumber operator + (const ModNumber &y) const { return (x + y.x >= _MOD) ? (x + y.x - _MOD) : (x + y.x); }
    inline ModNumber operator - (const ModNumber &y) const { return (x - y.x < 0) ? (x - y.x + _MOD) : (x - y.x); }
    inline ModNumber operator * (const ModNumber &y) const { return ModNumber((LL)x * y.x % _MOD); }
    inline ModNumber operator / (const ModNumber &y) const { return *this * y.Pow(_MOD - 2); }
    inline ModNumber operator ^ (const int &y) const { return Pow(y); }
    inline void operator += (const ModNumber &y) { *this = *this + y; }
    inline void operator *= (const ModNumber &y) { *this = *this * y; }
    inline void operator -= (const ModNumber &y) { *this = *this - y; }
    inline void operator /= (const ModNumber &y) { *this = *this / y; }
    inline void operator ^= (const int &y) const { *this = *this ^ y; }
    inline bool operator == (const int &y) const { return x == y; }
    inline bool operator != (const int &y) const { return x != y; }
    inline bool operator < (const int &y) const { return x < y; }
    inline bool operator > (const int &y) const { return x > y; }
    inline bool operator <= (const int &y) const { return x <= y; }
    inline bool operator >= (const int &y) const { return x >= y; }
    inline ModNumber operator + (const int &y) const { return (x + y >= _MOD) ? (x + y - _MOD) : (x + y); }
    inline ModNumber operator - (const int &y) const { return (x - y < 0) ? (x - y + _MOD) : (x - y); }
    inline ModNumber operator * (const int &y) const { return ModNumber((LL)x * y % _MOD); }
    inline ModNumber operator / (const int &y) const { return *this * ModNumber(y).Pow(_MOD - 2); }
    inline void operator += (const int &y) { *this = *this + y; }
    inline void operator *= (const int &y) { *this = *this * y; }
    inline void operator -= (const int &y) { *this = *this - y; }
    inline void operator /= (const int &y) { *this = *this / y; }
};

const int MAXN = 2 * 100000;
const int MOD = 1000000007;

typedef ModNumber<MOD> Int;

Int Fac[MAXN + 5], Inv[MAXN + 5];

Int Mu[MAXN + 5];
bool Vis[MAXN + 5];
std::vector<int> Primes;

void Init(int n) {
	Mu[1] = 1;
	for (int i = 2; i <= n; i++) {
		if (!Vis[i])
			Mu[i] = MOD - 1, Primes.push_back(i);
		for (int j = 0; j < (int)Primes.size() && i * Primes[j] <= n; j++) {
			Vis[i * Primes[j]] = true;
			if (i % Primes[j] == 0) {
				Mu[i * Primes[j]] = 0;
				break;
			}
			Mu[i * Primes[j]] = -Mu[i];
		}
	}
	Fac[0] = 1;
	for (int i = 1; i <= n; i++)
		Fac[i] = Fac[i - 1] * i;
	Inv[n] = Fac[n] ^ (MOD - 2);
	for (int i = n - 1; i >= 0; i--)
		Inv[i] = Inv[i + 1] * (i + 1);
}

Int C(int n, int m) {
	if (n < m) return 0;
	return Fac[n] * Inv[m] * Inv[n - m];
}

int main() {
	Init(MAXN);
	int Q; scanf("%d", &Q);
	while (Q--) {
		Int Ans = 0;
		int N, F; scanf("%d%d", &N, &F);
		for (int i = 1; i * i <= N; i++) {
			if (N % i) continue;
			int j = N / i; Ans += Mu[i] * C(j - 1, F - 1);
			if (j != i) Ans += Mu[j] * C(i - 1, F - 1);
		}
		printf("%d\n", Ans.x);
	}
	return 0;
}

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值