CodeForces 248B Chilly Willy

本文探讨了一个有趣的数学问题:如何找到满足特定条件的最小n位数,该数需同时为2、3、5和7的倍数。通过分析与编程实践,文章提供了一种高效的方法来解决这一问题,并分享了实现这一解决方案的C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Chilly Willy
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Chilly Willy loves playing with numbers. He only knows prime numbers that are digits yet. These numbers are 235 and 7. But Willy grew rather bored of such numbers, so he came up with a few games that were connected with them.

Chilly Willy wants to find the minimum number of length n, such that it is simultaneously divisible by all numbers Willy already knows (235 and 7). Help him with that.

A number's length is the number of digits in its decimal representation without leading zeros.

Input

A single input line contains a single integer n (1 ≤ n ≤ 105).

Output

Print a single integer — the answer to the problem without leading zeroes, or "-1" (without the quotes), if the number that meet the problem condition does not exist.

Examples
input
1
output
-1
input
5
output

10080

题意:n位数,最小的,是2 3 5 7的倍数。。。

思路:先打表找规律


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<cmath>
using namespace std;
#define mod 1000000007
#define ll long long
int main()
{
    int n;
    /*while(cin>>n)
    {
        ll i=pow(10,n-1);
        for(;i<i*10;i++)
        {
            if(i%210==0)
                break;
        }
        cout<<i<<endl;
    }*/
    string map[]={"","050","080","170","020","200","110"};
    while(cin>>n)
    {
        if(n<3)
            cout<<-1<<endl;
        else if(n==3)
            cout<<210<<endl;
        else
        {
            cout<<1;
            for(int i=1;i<n-3;i++)
                cout<<0;
            n=(n+3)%6;
            if(n==0)
                n=6;
            cout<<map[n]<<endl;
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值