Prime Gap

Prime Gap

Time Limit : 10000/5000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 40   Accepted Submission(s) : 31
Problem Description

The sequence of n 1 consecutive composite numbers (positive integers that are not prime and not equal to 1) lying between two successive prime numbers p and p + nis called a prime gap of length n. For example, 24, 25, 26, 27, 28 between 23 and 29 is a prime gap of length 6.

Your mission is to write a program to calculate, for a given positive integer k, the length of the prime gap that contains k. For convenience, the length is considered 0 in case no prime gap contains k.

 

Input
<p>The input is a sequence of lines each of which contains a single positive integer. Each positive integer is greater than 1 and less than or equal to the 100000th prime number, which is 1299709. The end of the input is indicated by a line containing a single zero.</p>
 

Output
<p>The output should be composed of lines each of which contains a single non-negative integer. It is the length of the prime gap that contains the corresponding positive integer in the input if it is a composite number, or 0 otherwise. No other characters should occur in the output.</p>
 

Sample Input
10 11 27 2 492170 0
 

Sample Output
4 0 6 0 114
题意:给一个n 是素数直接输出0
不是素数则输出比他大的最小的素数与比他小的最大的素数的差
思路:筛素数
之前有简单看过欧拉筛法和埃拉托斯特拉筛法
埃拉托斯特拉筛法就是找到第一个新素数然后将其倍数全部筛掉,做很多无用功,但是足够了
欧拉筛法的时间复杂度更小 具体问度娘
int Eratosthenes (int n){           int i, j, k;           phi[1] = 1;           for (i = 2; i < n; ++i){                   if (!vis[i]) p[cnt++] = i;                   for (j = i; j < n; j += i) {                           if (!phi[j]) phi[j] = j;                           phi[j] = phi[j] / i * (i - 1);                           vis[j] = true;                   }           }           return cnt;   }  
  • Source Code
    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    using namespace std;
    int p[1299709+10];
    void find()
    {
        int i,j;
        for(i=2;i<1299709+10;i++)
        {
            if(!p[i])
            {
                for(j=i+i;j<1299709+10;j+=i)
                {
                    p[j]=1;
                    }
                }
        }
        }
    int judge(int x)
    {
        for(int i=2;i<x;i++)
        {
            if(x%i==0)
            return 0;
            }
        return 1;
        }
    int main()
    {
        find();
        int i,j;
        //cout<<judge(11)<<endl;
        //for(i=1;i<20;i++)
        //cout<<i<<" "<<p[i]<<endl;
        int n;
        int num1,num2;
        while(cin>>n)
        {
            if(n==0)break;
            if(p[n]==0)
            cout<<0<<endl;
            else
            {
                for(i=n;i<1299709+10;i++)
                {
                    if(p[i]==0)
                    {
                        num1=i;
                        break;
                        }
                    }
                for(i=n;i>=1;i--)
                {
                    if(p[i]==0)
                    {
                        num2=i;
                        break;
                        }
                    }
                cout<<num1-num2<<endl;
                }
            }
        return 0;
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值