最大m字段和

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30233    Accepted Submission(s): 10634


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
6

8

dp[i][j]表示前j项中i个字段和的最大值

dp[i][j]=max(dp[i][j-1]+dp[i-1][t])+num[j]

#include<iostream>//最大m字段和问题
#include<stdio.h>
#include<string.h>
using namespace std;
int val[1000001],ans[1000001],lans[1000001];
int max(int a,int b)
{
    return a>b?a:b;
    }
int main()
{
    int n,m,i,j;
    //cout<<max(7,8);
    while(cin>>n>>m)
    {
        memset(ans,0,sizeof(ans));
        memset(lans,0,sizeof(lans));
        for(i=1;i<=m;i++)
        {
            scanf("%d",&val[i]);
        }
        long   maxx;
        for(i=1;i<=n;i++)
        {
            maxx=-99*1000000;
            for(j=i;j<=m;j++)
            {
                ans[j]=max(ans[j-1],lans[j-1])+val[j];//当前的最大值是前一项的最大值和上一个状态较大的值加上目前的值
                lans[j-1]=maxx ;//修改前一项的值,不能和前一行互换
                if(ans[j]>maxx )
                maxx=ans[j];
                }
            }
        cout<<maxx<<endl;
        }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值