基于粒子群算法改进的BP神经网络回归分析

142 篇文章 ¥59.90 ¥99.00
本文探讨了如何利用粒子群算法(PSO)改进BP神经网络进行回归分析。介绍了BP神经网络和PSO的基本原理,并详细阐述了结合两者进行优化的步骤,包括初始化参数、计算适应度值、更新粒子位置和速度,以及终止条件判断。提供的Matlab源代码为读者展示了PSO-BP的实现过程,强调这种方法能提升回归分析的准确性。

基于粒子群算法改进的BP神经网络回归分析

在本文中,我们将介绍如何使用粒子群算法(Particle Swarm Optimization,PSO)改进BP神经网络进行回归分析。我们将首先简要介绍BP神经网络和粒子群算法的原理,然后详细描述如何将它们结合起来并给出相应的源代码。

  1. BP神经网络简介
    BP神经网络是一种常用的人工神经网络模型,可以用于回归分析和分类问题。它由输入层、隐含层和输出层构成,每个神经元与前后层的神经元相连接。BP神经网络通过前向传播和反向传播两个阶段进行训练,其中前向传播用于计算输出值,反向传播用于更新网络的权重和偏置。

  2. 粒子群算法简介
    粒子群算法是一种群体智能优化算法,灵感来自于鸟群或鱼群等群体行为。在PSO中,每个解(也称为粒子)都有一个位置和速度,通过不断迭代更新来搜索最优解。每个粒子的位置代表解的候选解,而速度代表解的搜索方向和步长。

  3. 粒子群算法改进的BP神经网络
    为了改进BP神经网络的性能,我们将粒子群算法应用于其权重和偏置的优化过程。具体步骤如下:

步骤1:初始化粒子群参数

  • 设置粒子群大小、最大迭代次数和惯性权重等参数。
  • 随机初始化粒子群的位置和速度。
  • 初始化每个粒子的最佳位置和适应度值。

步骤2:计算适应度值

  • 将每个粒子的位置作为BP神经网络的权重和偏置。
  • 使用训练数据集进行BP神经网络的训练,并计算预测结果与实际结果之间的误差。
  • 将误差作为粒子的适应度值。
This add-in to the PSO Research toolbox (Evers 2009) aims to allow an artificial neural network (ANN or simply NN) to be trained using the Particle Swarm Optimization (PSO) technique (Kennedy, Eberhart et al. 2001). This add-in acts like a bridge or interface between MATLAB’s NN toolbox and the PSO Research Toolbox. In this way, MATLAB’s NN functions can call the NN add-in, which in turn calls the PSO Research toolbox for NN training. This approach to training a NN by PSO treats each PSO particle as one possible solution of weight and bias combinations for the NN (Settles and Rylander ; Rui Mendes 2002; Venayagamoorthy 2003). The PSO particles therefore move about in the search space aiming to minimise the output of the NN performance function. The author acknowledges that there already exists code for PSO training of a NN (Birge 2005), however that code was found to work only with MATLAB version 2005 and older. This NN-addin works with newer versions of MATLAB till versions 2010a. HELPFUL LINKS: 1. This NN add-in only works when used with the PSORT found at, http://www.mathworks.com/matlabcentral/fileexchange/28291-particle-swarm-optimization-research-toolbox. 2. The author acknowledges the modification of code used in an old PSO toolbox for NN training found at http://www.mathworks.com.au/matlabcentral/fileexchange/7506. 3. User support and contact information for the author of this NN add-in can be found at http://www.tricia-rambharose.com/ ACKNOWLEDGEMENTS The author acknowledges the support of advisors and fellow researchers who supported in various ways to better her understanding of PSO and NN which lead to the creation of this add-in for PSO training of NNs. The acknowledged are as follows: * Dr. Alexander Nikov - Senior lecturer and Head of Usaility Lab, UWI, St. Augustine, Trinidad, W.I. http://www2.sta.uwi.edu/~anikov/ * Dr. Sabine Graf - Assistant Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=sabineg * Dr. Kinshuk - Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=kinshuk * Members of the iCore group at Athabasca University, Edmonton, Alberta, Canada.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值