python打卡DAY14

##注入所需库

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import random

import numpy as np

import time

import shap

from sklearn.svm import SVC #支持向量机分类器

# from sklearn.neighbors import KNeighborsClassifier #K近邻分类器

# from sklearn.linear_model import LogisticRegression #逻辑回归分类器

import xgboost as xgb #XGBoost分类器

import lightgbm as lgb #LightGBM分类器

from sklearn.ensemble import RandomForestClassifier #随机森林分类器

# from catboost import CatBoostClassifier #CatBoost分类器

# from sklearn.tree import DecisionTreeClassifier #决策树分类器

# from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯分类器

from skopt import BayesSearchCV

from skopt.space import Integer

from deap import base, creator, tools, algorithms

from sklearn.model_selection import StratifiedKFold, cross_validate # 引入分层 K 折和交叉验证工具

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标

from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵

from sklearn.metrics import make_scorer#定义函数

import warnings #用于忽略警告信息

warnings.filterwarnings("ignore") # 忽略所有警告信息


 

#设置中文字体&读取数据

plt.rcParams['font.sans-serif']=['STHeiti']

plt.rcParams['axes.unicode_minus']=True

plt.rcParams['figure.dpi']=100

#查看基本信息&读取数据

data=pd.read_csv(r'data.csv')

print(f'{data.info()}\n{data.isnull().sum()}\n{data.head()}\{data.columns}')

#绘制图像

# plt.figure(figsize=(6,4))

# sns.boxplot(x=data['Annual Income'])

# plt.title('年收入箱线图')

# plt.xlabel('年收入')

# plt.tight_layout()

# plt.show()

# plt.figure(figsize=(6,4))

# sns.boxplot(x='Credit Default',y='Annual Income',data=data)

# plt.title('年收入箱线图')

# plt.xlabel('是否欠款')

# plt.ylabel('金额')

# plt.xticks([0,1],['n','y'])

# plt.tight_layout()

# plt.show()

# plt.figure(figsize=(6,4))

# sns.histplot(

# x='Annual Income',

# hue='Credit Default',

# data=data,

# element='bars',

# kde=True

# )

# plt.title('年收入直方图')

# plt.xlabel('年收入')

# plt.ylabel('金额')

# plt.tight_layout()

# plt.show()

#数据填补

for i in data.columns:

if data[i].dtype!='object':

if data[i].isnull().sum()>0:

data[i].fillna(data[i].mean(),inplace=True)

else:

if data[i].isnull().sum()>0:

data[i].fillna(data[i].mode()[0],inplace=True)

print(f'{data.info()}\n{data.isnull().sum()}')

mapping={'10+ years':0,

'9 years':1,

'8 years':2,

'7 years':3,

'6 years':4,

'5 years':5,

'4 years':6,

'3 years':7,

'2 years':8,

'1 year':9,

'< 1 year':10}

data['Years in current job']=data['Years in current job'].map(mapping)

data=pd.get_dummies(data=data,drop_first=True)

data2=pd.read_csv(r'data.csv')

dummies_list=[]

for i in data.columns:

if i not in data2.columns:

dummies_list.append(i)

for i in dummies_list:

data[i]=data[i].astype(int)

print(f'{data.info()}\n{data.isnull().sum()}\n{data.head()}\n{data.columns}')

# #绘制相关热力图

# continuous_list=['Annual Income', 'Years in current job', 'Tax Liens',

# 'Number of Open Accounts', 'Years of Credit History',

# 'Maximum Open Credit', 'Number of Credit Problems',

# 'Months since last delinquent', 'Bankruptcies', 'Current Loan Amount',

# 'Current Credit Balance', 'Monthly Debt', 'Credit Score']

# correlation_matrix=data[continuous_list].corr()

# plt.figure(figsize=(12,10))

# sns.heatmap(correlation_matrix,annot=True,cmap='coolwarm',vmin=-1,vmax=1)

# plt.title('相关热力图')

# plt.xticks(rotation=45,ha='right')

# plt.tight_layout()

# plt.show()

# #箱线图子图

features=['Annual Income','Years in current job','Tax Liens','Number of Open Accounts']

# fig,axes=plt.subplots(2,2,figsize=(6,4))

# for i,feature in enumerate(features):

# row,col=i//2,i%2

# axes[row,col].boxplot(data[features])

# axes[row,col].set_title(f'box of {feature}')

# axes[row,col].set_ylabel(feature)

# plt.tight_layout()

# plt.show()

# #分类箱线图子图

# fig,axes=plt.subplots(2,2,figsize=(6,4))

# for i,feature in enumerate(features):

# row,col=i//2,i%2

# sns.boxenplot(x='Credit Default',y=feature,data=data,ax=axes[row,col])

# axes[row,col].set_title(f'box of {feature}')

# axes[row,col].set_ylabel(feature)

# plt.tight_layout()

# plt.show()

# #分类直方图子图

# fig,axes=plt.subplots(2,2,figsize=(6,4))

# for i,feature in enumerate(features):

# row,col=i//2,i%2

# sns.histplot(

# x=feature,

# hue='Credit Default',

# hue_order=[0,1],

# data=data,

# kde=True,

# element='bars',

# ax=axes[row,col]

# )

# axes[row,col].set_title(f'{feature}分类直方图')

# axes[row,col].set_xlabel(feature)

# axes[row,col].set_ylabel('count')

# plt.tight_layout()

# plt.show()

from sklearn.model_selection import train_test_split

x=data.drop('Credit Default',axis=1)

y=data['Credit Default']

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)

print(f'train:{x_train.shape}\ntest:{x_test.shape}')

# #SVM

# print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")

# start_time=time.time()

# svm_model=SVC(random_state=42,class_weight='balanced')

# svm_model.fit(x_train,y_train)

# svm_pred=svm_model.predict(x_test)

# end_time=time.time()

# print(f'训练与预测耗时:{end_time - start_time:.4f}')

# print('\n SVM分类报告')

# print(classification_report(y_test,svm_pred))

# print('\nSVM混淆矩阵')

# print(confusion_matrix(y_test,svm_pred))

# #randomforrest

# print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")

# start_time=time.time()

# rf_model=RandomForestClassifier(random_state=42,class_weight='balanced')

# rf_model.fit(x_train,y_train)

# rf_pred=rf_model.predict(x_test)

# end_time=time.time()

# print(f'训练与预测耗时:{end_time - start_time:.4f}')

# print('\n随机森林分类报告')

# print(classification_report(y_test,rf_pred))

# print('\n随机森林混淆矩阵')

# print(confusion_matrix(y_test,rf_pred))

#定义约登指数

def youden_score(y_true,y_pred):

tn,fp,fn,tp=confusion_matrix(y_true,y_pred).ravel()

sensitivity=tp/(tp+fn)

specificity=tn/(tn+fp)

return sensitivity+specificity-1

youden_scorer=make_scorer(youden_score)

# # #SMOTE过采样后带权重网格搜索优化的随机森林

# #SMOTE过采样

# from imblearn.over_sampling import SMOTE

# smote=SMOTE(random_state=42)

# x_train_smote,y_train_smote=smote.fit_resample(x_train,y_train)

# #网格搜索&交叉验证

# from sklearn.model_selection import GridSearchCV

# cv_strategy=StratifiedKFold(n_splits=5,shuffle=True,random_state=42)

# param_grid={

# 'n_estimators':[5,10,15],

# 'max_depth':[None,5,10],

# 'min_samples_split':[2,3,4],

# 'min_samples_leaf':[2,3,4]

# }

# grid_search=GridSearchCV(

# estimator=RandomForestClassifier(random_state=42,class_weight='balanced'),

# param_grid=param_grid,

# cv=cv_strategy,

# n_jobs=-1,

# scoring=youden_scorer

# )

# start_time=time.time()

# grid_search.fit(x_train_smote,y_train_smote)

# end_time=time.time()

# best_model=grid_search.best_estimator_

# best_pred=best_model.predict(x_test)

# print(f'网格搜索耗时:{end_time-start_time:.4f}秒')

# print('最佳参数:',grid_search.best_params_)

# print('\n带权重网格搜索优化后的随机森林在测试集上的分类报告')

# print(classification_report(y_test,best_pred))

# print('网格搜索优化后的随机森林在测试集上的混淆矩阵')

# print(confusion_matrix(y_test,best_pred))

# #SMOTE过采样后带权重的贝叶斯优化的随机森林

# #SMOTE过采样

# from imblearn.over_sampling import SMOTE

# smote=SMOTE(random_state=42)

# x_train_smote,y_train_smote=smote.fit_resample(x_train,y_train)

# #贝叶斯优化&交叉验证

# from sklearn.model_selection import GridSearchCV

# cv_strategy=StratifiedKFold(n_splits=5,shuffle=True,random_state=42)

# search_space={

# 'n_estimators':Integer(1,5),

# 'max_depth':Integer(1,5),

# 'min_samples_split':Integer(2,5),

# 'min_samples_leaf':Integer(1,5)

# }

# bayes_search=BayesSearchCV(

# estimator=RandomForestClassifier(random_state=42,class_weight='balanced'),

# search_spaces=search_space,

# n_iter=5,

# cv=cv_strategy,

# n_jobs=-1,

# scoring=youden_scorer

# )

# start_time=time.time()

# bayes_search.fit(x_train_smote,y_train_smote)

# end_time=time.time()

# best_model=bayes_search.best_estimator_

# best_pred=best_model.predict(x_test)

# print(f'贝叶斯优化耗时:{end_time-start_time:.4f}秒')

# print('最佳参数',bayes_search.best_params_)

# print('\n贝叶斯优化后的随机森林在测试集上的分类报告')

# print(classification_report(y_test,best_pred))

# print('\n贝叶斯优化后的随机森林在测试集上的混淆矩阵')

# print(confusion_matrix(y_test,best_pred))

# --- 2. 遗传算法优化随机森林 ---

print("\n--- 2. 遗传算法优化随机森林 (训练集 -> 测试集) ---")

# 定义适应度函数和个体类型

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

creator.create("Individual", list, fitness=creator.FitnessMax)

# 定义超参数范围

n_estimators_range = (50, 200)

max_depth_range = (10, 30)

min_samples_split_range = (2, 10)

min_samples_leaf_range = (1, 4)

# 初始化工具盒

toolbox = base.Toolbox()

# 定义基因生成器

toolbox.register("attr_n_estimators", random.randint, *n_estimators_range)

toolbox.register("attr_max_depth", random.randint, *max_depth_range)

toolbox.register("attr_min_samples_split", random.randint, *min_samples_split_range)

toolbox.register("attr_min_samples_leaf", random.randint, *min_samples_leaf_range)

# 定义个体生成器

toolbox.register("individual", tools.initCycle, creator.Individual,

(toolbox.attr_n_estimators, toolbox.attr_max_depth,

toolbox.attr_min_samples_split, toolbox.attr_min_samples_leaf), n=1)

# 定义种群生成器

toolbox.register("population", tools.initRepeat, list, toolbox.individual)

# 定义评估函数 - 使用约登指数替代准确率

def evaluate(individual):

n_estimators, max_depth, min_samples_split, min_samples_leaf = individual

model = RandomForestClassifier(n_estimators=n_estimators,

max_depth=max_depth,

min_samples_split=min_samples_split,

min_samples_leaf=min_samples_leaf,

random_state=42)

model.fit(x_train, y_train)

y_pred = model.predict(x_test)

# 使用约登指数替代准确率

tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

sensitivity = tp / (tp + fn)

specificity = tn / (tn + fp)

youden_index = sensitivity + specificity - 1

return youden_index,

# 注册评估函数

toolbox.register("evaluate", evaluate)

# 注册遗传操作

toolbox.register("mate", tools.cxTwoPoint)

toolbox.register("mutate", tools.mutUniformInt, low=[n_estimators_range[0], max_depth_range[0],

min_samples_split_range[0], min_samples_leaf_range[0]],

up=[n_estimators_range[1], max_depth_range[1],

min_samples_split_range[1], min_samples_leaf_range[1]], indpb=0.1)

toolbox.register("select", tools.selTournament, tournsize=3)

# 初始化种群

pop = toolbox.population(n=20)

# 遗传算法参数

NGEN = 10 #迭代数量由10代修改为300代

CXPB = 0.5

MUTPB = 0.2

start_time = time.time()

# 运行遗传算法

for gen in range(NGEN):

offspring = algorithms.varAnd(pop, toolbox, cxpb=CXPB, mutpb=MUTPB)

fits = toolbox.map(toolbox.evaluate, offspring)

for fit, ind in zip(fits, offspring):

ind.fitness.values = fit

pop = toolbox.select(offspring, k=len(pop))

end_time = time.time()

# 找到最优个体

best_ind = tools.selBest(pop, k=1)[0]

best_n_estimators, best_max_depth, best_min_samples_split, best_min_samples_leaf = best_ind

print(f"遗传算法优化耗时: {end_time - start_time:.4f} 秒")

print("最佳参数: ", {

'n_estimators': best_n_estimators,

'max_depth': best_max_depth,

'min_samples_split': best_min_samples_split,

'min_samples_leaf': best_min_samples_leaf

})

# 使用最佳参数的模型进行预测

best_model = RandomForestClassifier(n_estimators=best_n_estimators,

max_depth=best_max_depth,

min_samples_split=best_min_samples_split,

min_samples_leaf=best_min_samples_leaf,

random_state=42)

best_model.fit(x_train, y_train)

best_pred = best_model.predict(x_test)

print("\n遗传算法优化后的随机森林 在测试集上的分类报告:")

print(classification_report(y_test, best_pred))

print("遗传算法优化后的随机森林 在测试集上的混淆矩阵:")

print(confusion_matrix(y_test, best_pred))


 

# # --- 2. 粒子群优化算法优化随机森林 ---

# print("\n--- 2. 粒子群优化算法优化随机森林 (训练集 -> 测试集) ---")


 

# # 定义适应度函数,本质就是构建了一个函数实现 参数--> 评估指标的映射

# def fitness_function(params):

# n_estimators, max_depth, min_samples_split, min_samples_leaf = params # 序列解包,允许你将一个可迭代对象(如列表、元组、字符串等)中的元素依次赋值给多个变量。

# model = RandomForestClassifier(n_estimators=int(n_estimators),

# max_depth=int(max_depth),

# min_samples_split=int(min_samples_split),

# min_samples_leaf=int(min_samples_leaf),

# random_state=42)

# model.fit(x_train, y_train)

# y_pred = model.predict(x_test)

# # 使用约登指数替代准确率

# tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

# sensitivity = tp / (tp + fn) # 真阳性率

# specificity = tn / (tn + fp) # 真阴性率

# youden_index = sensitivity + specificity - 1 # 约登指数

# return youden_index


 

# # 粒子群优化算法实现

# def pso(num_particles, num_iterations, c1, c2, w, bounds): # 粒子群优化算法核心函数

# # num_particles:粒子的数量,即算法中用于搜索最优解的个体数量。

# # num_iterations:迭代次数,算法运行的最大循环次数。

# # c1:认知学习因子,用于控制粒子向自身历史最佳位置移动的程度。

# # c2:社会学习因子,用于控制粒子向全局最佳位置移动的程度。

# # w:惯性权重,控制粒子的惯性,影响粒子在搜索空间中的移动速度和方向。

# # bounds:超参数的取值范围,是一个包含多个元组的列表,每个元组表示一个超参数的最小值和最大值。

# num_params = len(bounds)

# particles = np.array([[random.uniform(bounds[i][0], bounds[i][1]) for i in range(num_params)] for _ in

# range(num_particles)])

# velocities = np.array([[0] * num_params for _ in range(num_particles)])

# personal_best = particles.copy()

# personal_best_fitness = np.array([fitness_function(p) for p in particles])

# global_best_index = np.argmax(personal_best_fitness)

# global_best = personal_best[global_best_index]

# global_best_fitness = personal_best_fitness[global_best_index]

# for _ in range(num_iterations):

# r1 = np.array([[random.random() for _ in range(num_params)] for _ in range(num_particles)])

# r2 = np.array([[random.random() for _ in range(num_params)] for _ in range(num_particles)])

# velocities = w * velocities + c1 * r1 * (personal_best - particles) + c2 * r2 * (

# global_best - particles)

# particles = particles + velocities

# for i in range(num_particles):

# for j in range(num_params):

# if particles[i][j] < bounds[j][0]:

# particles[i][j] = bounds[j][0]

# elif particles[i][j] > bounds[j][1]:

# particles[i][j] = bounds[j][1]

# fitness_values = np.array([fitness_function(p) for p in particles])

# improved_indices = fitness_values > personal_best_fitness

# personal_best[improved_indices] = particles[improved_indices]

# personal_best_fitness[improved_indices] = fitness_values[improved_indices]

# current_best_index = np.argmax(personal_best_fitness)

# if personal_best_fitness[current_best_index] > global_best_fitness:

# global_best = personal_best[current_best_index]

# global_best_fitness = personal_best_fitness[current_best_index]

# return global_best, global_best_fitness


 

# # 超参数范围

# bounds = [(50, 200), (10, 30), (2, 10), (1, 4)] # n_estimators, max_depth, min_samples_split, min_samples_leaf

# # 粒子群优化算法参数

# num_particles = 20

# num_iterations = 10

# c1 = 1.5

# c2 = 1.5

# w = 0.5

# start_time = time.time()

# best_params, best_fitness = pso(num_particles, num_iterations, c1, c2, w, bounds)

# end_time = time.time()

# print(f"粒子群优化算法优化耗时: {end_time - start_time:.4f} 秒")

# print("最佳参数: ", {

# 'n_estimators': int(best_params[0]),

# 'max_depth': int(best_params[1]),

# 'min_samples_split': int(best_params[2]),

# 'min_samples_leaf': int(best_params[3])

# })

# print(f"最佳约登指数: {best_fitness:.4f}")

# # 使用最佳参数的模型进行预测

# best_model = RandomForestClassifier(n_estimators=int(best_params[0]),

# max_depth=int(best_params[1]),

# min_samples_split=int(best_params[2]),

# min_samples_leaf=int(best_params[3]),

# random_state=42)

# best_model.fit(x_train, y_train)

# best_pred = best_model.predict(x_test)

# print("\n粒子群优化算法优化后的随机森林 在测试集上的分类报告:")

# print(classification_report(y_test, best_pred))

# print("粒子群优化算法优化后的随机森林 在测试集上的混淆矩阵:")

# print(confusion_matrix(y_test, best_pred))




 

# # --- 2. 模拟退火算法优化随机森林 ---

# print("\n--- 2. 模拟退火算法优化随机森林 (训练集 -> 测试集) ---")


 

# # 定义适应度函数

# def fitness_function(params):

# n_estimators, max_depth, min_samples_split, min_samples_leaf = params

# model = RandomForestClassifier(n_estimators=int(n_estimators),

# max_depth=int(max_depth),

# min_samples_split=int(min_samples_split),

# min_samples_leaf=int(min_samples_leaf),

# random_state=42)

# model.fit(x_train, y_train)

# y_pred = model.predict(x_test)

# # 使用约登指数替代准确率

# tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

# sensitivity = tp / (tp + fn) # 真阳性率

# specificity = tn / (tn + fp) # 真阴性率

# youden_index = sensitivity + specificity - 1 # 约登指数

# return youden_index


 

# # 模拟退火算法实现

# def simulated_annealing(initial_solution, bounds, initial_temp, final_temp, alpha):

# current_solution = initial_solution

# current_fitness = fitness_function(current_solution)

# best_solution = current_solution

# best_fitness = current_fitness

# temp = initial_temp

# while temp > final_temp:

# # 生成邻域解

# neighbor_solution = []

# for i in range(len(current_solution)):

# new_val = current_solution[i] + random.uniform(-1, 1) * (bounds[i][1] - bounds[i][0]) * 0.1

# new_val = max(bounds[i][0], min(bounds[i][1], new_val))

# neighbor_solution.append(new_val)

# neighbor_fitness = fitness_function(neighbor_solution)

# delta_fitness = neighbor_fitness - current_fitness

# if delta_fitness > 0 or random.random() < np.exp(delta_fitness / temp):

# current_solution = neighbor_solution

# current_fitness = neighbor_fitness

# if current_fitness > best_fitness:

# best_solution = current_solution

# best_fitness = current_fitness

# temp *= alpha

# return best_solution, best_fitness


 

# # 超参数范围

# bounds = [(50, 200), (10, 30), (2, 10), (1, 4)] # n_estimators, max_depth, min_samples_split, min_samples_leaf

# # 模拟退火算法参数

# initial_temp = 100 # 初始温度

# final_temp = 0.1 # 终止温度

# alpha = 0.95 # 温度衰减系数

# # 初始化初始解

# initial_solution = [random.uniform(bounds[i][0], bounds[i][1]) for i in range(len(bounds))]

# start_time = time.time()

# best_params, best_fitness = simulated_annealing(initial_solution, bounds, initial_temp, final_temp, alpha)

# end_time = time.time()

# print(f"模拟退火算法优化耗时: {end_time - start_time:.4f} 秒")

# print("最佳参数: ", {

# 'n_estimators': int(best_params[0]),

# 'max_depth': int(best_params[1]),

# 'min_samples_split': int(best_params[2]),

# 'min_samples_leaf': int(best_params[3])

# })

# print(f"最佳约登指数: {best_fitness:.4f}")

# # 使用最佳参数的模型进行预测

# best_model = RandomForestClassifier(n_estimators=int(best_params[0]),

# max_depth=int(best_params[1]),

# min_samples_split=int(best_params[2]),

# min_samples_leaf=int(best_params[3]),

# random_state=42)

# best_model.fit(x_train, y_train)

# best_pred = best_model.predict(x_test)

# print("\n模拟退火算法优化后的随机森林 在测试集上的分类报告:")

# print(classification_report(y_test, best_pred))

# print("模拟退火算法优化后的随机森林 在测试集上的混淆矩阵:")

# print(confusion_matrix(y_test, best_pred))

#shap分析

start_time=time.time()

explainer=shap.TreeExplainer(best_model)

shap_values=explainer.shap_values(x_test)

print('shape_value shape:',shap_values.shape)

print('shap_values[0]shape:',shap_values[0].shape)

print('shap_values[:,:,0]shape',shap_values[:,:,0].shape)

print('x_test shape:',x_test.shape)

end_time=time.time()

print(f"shap分析耗时: {end_time - start_time:.4f} 秒")

# SHAP 特征重要性条形图 (Summary Plot - bar)

print("--- 2. SHAP 特征重要性条形图 ---")

shap.summary_plot(shap_values[:,:,0],x_test,plot_type='bar',show=False)

plt.title('SHAP特征重要性条形图')

plt.tight_layout()

plt.show()

#SHAP特征重要性蜂巢图

print("--- 2. SHAP 特征重要性蜂巢图 ---")

shap.summary_plot(shap_values[:,:,0],x_test,plot_type='violin',show=False)

plt.title('SHAP特征重要蜂巢图')

plt.tight_layout()

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值