题目
The n-queens puzzle is the problem of placing n queens on an n�n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens'
placement, where 'Q'
and '.'
both
indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
思路
class Solution {
public:
vector<vector<string> > solveNQueens(int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<vector<int>> result;
vector<int> vec;
myqueens(result,vec,n,1);
vector<vector<string>> res;
for(int i=0;i<result.size();i++)
{
vec = result[i];
vector<string> tmpvec;
for(int j=0;j<n;j++)
{
string tmpstr(n,'.');
tmpstr[vec[j]-1] = 'Q';
tmpvec.push_back(tmpstr);
}
res.push_back(tmpvec);
}
return res;
}
void myqueens(vector<vector<int>> &result, vector<int> &vec, int n, int k)
{
if(k==n+1){
result.push_back(vec);
return ;
}
int j=1;
for(j=1;j<=n;j++){
if(isCanloc(vec, k, j)){
vec.push_back(j);
myqueens(result, vec, n, k+1);
vec.pop_back();
}
}
if(j>n)
return ;
}
bool isCanloc(vector<int> &vec, int k, int j){
for(int i=0;i<vec.size();i++)
{
int x = i+1;
int y = vec[i];
if(j==y || k-x==j-y || x-k==j-y)
return false;
}
return true;
}
};