Given a tree, you are supposed to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤20) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node, and gives the indices of the left and right children of the node. If the child does not exist, a - will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each case, print in one line YES and the index of the last node if the tree is a complete binary tree, or NO and the index of the root if not. There must be exactly one space separating the word and the number.
Sample Input 1:
9
7 8
- -
- -
- -
0 1
2 3
4 5
- -
- -
Sample Output 1:
YES 8
Sample Input 2:
8
- -
4 5
0 6
- -
2 3
- 7
- -
- -
Sample Output 2:
NO 1
题目大意
题目给定一棵树,要求判断它是否是一个完整的二叉树。如是则返回最后一个节点的编号;如果不是就返回根节点的编号。
解题思路
- 读入树并将出现过的节点进行记录;
- 找到未出现过的节点即为根;
- 通过前序遍历观察节点序号是否始终在给定值以内,如是则判断其为完全二叉树,否则不是;
- 按照题目要求输出并返回零值。
代码
#include<stdio.h>
struct Node{
int lchild,rchild;
}node[30];
int flag=0;
int N,root,Max,isroot[30];
void Init(){
int i,j,num;
char a[3],b[3];
scanf("%d",&N);
for(i=0;i<N;i++){
scanf("%s%s",a,b);
if(a[0]=='-'){
node[i].lchild=-1;
}else{
j=0,num=0;
while(a[j]!=0){
num=num*10+a[j]-'0';
j++;
}
node[i].lchild=num;
isroot[num]=1;
}
if(b[0]=='-'){
node[i].rchild=-1;
}else{
j=0,num=0;
while(b[j]!=0){
num=num*10+b[j]-'0';
j++;
}
node[i].rchild=num;
isroot[num]=1;
}
}
for(i=0;i<N;i++){
if(isroot[i]==0){
root=i;
break;
}
}
}
void PreOrder(int now,int seq){
if(flag||now==-1){
return;
}
if(seq>N){
flag=1;
return;
}else if(seq==N){
Max=now;
}
PreOrder(node[now].lchild,seq*2);
PreOrder(node[now].rchild,seq*2+1);
}
int main(){
Init();
PreOrder(root,1);
if(flag){
printf("NO %d\n",root);
}else{
printf("YES %d\n",Max);
}
}
运行结果