一、extern "C"
C++支持函数重载,C不支持。void foo(int x, int y) 函数被C编译后在库中的名字为_foo,在C++编译后库中名字类似_foo_int_int。
C++提供extern "C"解决名字匹配问题。
二、 #define
注意:将表达式中的所有参数用括号括起来。e.g. #define MIN(A, B) ((A) <= (B) ? (A) : (B)
三、mutable
mutalbe的中文意思是“可变的,易变的”,跟constant(既C++中的const)是反义词。
在C++中,mutable也是为了突破const的限制而设置的。被mutable修饰的变量,将永远处于可变的状态,即使在一个const函数中。
我们知道,如果类的成员函数不会改变对象的状态,那么这个成员函数一般会声明成const的。但是,有些时候,我们需要在const的函数里面修改一些跟类状态无关的数据成员,那么这个数据成员就应该被mutalbe来修饰。
四、sizeof()
注意数据对齐;
虚函数表占1个指针大小;
sizeof计算栈中分配的大小,而静态变量存放在全局数据区,不会计算在内:
class A
{public:
int a;
static int b;
A();
~A()
}
sizeof(A)=4
五、inline
内敛函数与普通函数相比可以加快程序的运行速度,因为不需要中断调用,在编译的时候内敛函数可以直接被镶嵌到目标代码中。
内敛函数要做参数类型检查,优于宏定义。(宏不是函数,只是在编译前将程序中有关字符串替换为宏体;inline是函数,但在编译中不产生单独代码,而是将有关代码嵌入到调用处)
一般用于:函数不断被重复调用,且该函数只有简单的几行、不包含循环语句。
六、sizeof和strlen的区别
1.sizeof操作符的结果类型是size_t,它在头文件中typedef为unsigned int类型。 该类型保证能容纳实现所建立的最大对象的字节大小。
2.sizeof是算符,strlen是函数。
3.sizeof可以用类型做参数,strlen只能用char*做参数,且必须是以''\0''结尾的。
sizeof还可以用函数做参数,比如:
short f();
printf("%d\n", sizeof(f()));
输出的结果是sizeof(short),即2。
4.数组做sizeof的参数不退化,传递给strlen就退化为指针了。
5.大部分编译程序 在编译的时候就把sizeof计算过了,是类型或是变量的长度。这就是sizeof(x)可以用来定义数组维数的原因 :
char str[20]="0123456789";
int a=strlen(str); //a=10;
int b=sizeof(str); //而b=20;
6.strlen的结果要在运行的时候才能计算出来,时用来计算字符串的长度,不是类型占内存的大小。
7.sizeof后如果是类型必须加括弧,如果是变量名可以不加括弧。这是因为sizeof是个操作符不是个函数。
8.当适用了于一个结构类型时或变量, sizeof 返回实际的大小, 当适用一静态地空间数组, sizeof 归还全部数组的尺寸。 sizeof 操作符不能返回动态地被分派了的数组或外部的数组的尺寸。
9.数组作为参数传给函数时传的是指针而不是数组,传递的是数组的首地址, 如:
fun(char [8])
fun(char [])
都等价于 fun(char *)
在C++里参数传递数组永远都是传递指向数组首元素的指针,编译器不知道数组的大小 。如果想在函数内知道数组的大小, 需要这样做:进入函数后用memcpy拷贝出来,长度由另一个形参传进去 :
fun(unsiged char *p1, int len)
{
unsigned char* buf = new unsigned char[len+1]
memcpy(buf, p1, len);
}
我们能常在用到 sizeof 和 strlen 的时候,通常是计算字符串数组的长度
看了上面的详细解释,发现两者的使用还是有区别的,从这个例子可以看得很清楚:
char str[20]="0123456789";
int a=strlen(str); //a=10; >>>> strlen 计算字符串的长度,以结束符 0x00 为字符串结束。
int b=sizeof(str); //而b=20; >>>> sizeof 计算的则是分配的数组 str[20] 所占的内存空间的大小,不受里面存储的内容改变。
上面是对静态数组处理的结果,如果是对指针,结果就不一样了
char* ss = "0123456789";
sizeof(ss) 结果 4 ===》ss是指向字符串常量的字符指针,sizeof 获得的是一个指针的之所占的空间,应该是 长整型的,所以是4
sizeof(*ss) 结果 1 ===》*ss是第一个字符 其实就是获得了字符串的第一位'0' 所占的内存空间,是char类 型的,占了 1 位
strlen(ss)= 10 >>>> 如果要获得这个字符串的长度,则一定要使用 strlen
七、函数指针
1. float(**def)[10]def为二级指针,指向一个一维数组的指针,数组元素都为float
2. double*(*gh)[10]gh为指向一个一维数组的指针,数组元素都为double*
3. double(*f[10])()f为一个数组,数组有10个元素,元素为函数指针,指向返回值为double的无参数的函数
4. int*((*b)[10])同int*(*b)[10]
5. long(* fun)(int)fun为指向返回值为long的参数为int的函数的指针
6. int(*(*F)(int,int))(int)F为函数指针,指向返回值为函数指针的参数为(int,int)的函数指针,其返回的函数指针指向返回值为int参数为int的函数
八、智能指针auto_ptr
已有智能指针 boost::shared_ptr见后说明
转载出处http://blog.youkuaiyun.com/hackbuteer1/article/details/7561235
智能指针(smart pointer)是存储指向动态分配(堆)对象指针的类,用于生存期控制,能够确保自动正确的销毁动态分配的对象,防止内存泄露。它的一种通用实现技术是使用引用计数(reference count)。智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针。每次创建类的新对象时,初始化指针并将引用计数置为1;当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数;对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果引用计数为减至0,则删除对象),并增加右操作数所指对象的引用计数;调用析构函数时,构造函数减少引用计数(如果引用计数减至0,则删除基础对象)。
智能指针就是模拟指针动作的类。所有的智能指针都会重载 -> 和 * 操作符。智能指针还有许多其他功能,比较有用的是自动销毁。这主要是利用栈对象的有限作用域以及临时对象(有限作用域实现)析构函数释放内存。当然,智能指针还不止这些,还包括复制时可以修改源对象等。智能指针根据需求不同,设计也不同(写时复制,赋值即释放对象拥有权限、引用计数等,控制权转移等)。auto_ptr 即是一种常见的智能指针。
智能指针通常用类模板实现:
- template <class T>
- class smartpointer
- {
- private:
- T *_ptr;
- public:
- smartpointer(T *p) : _ptr(p) //构造函数
- {
- }
- T& operator *() //重载*操作符
- {
- return *_ptr;
- }
- T* operator ->() //重载->操作符
- {
- return _ptr;
- }
- ~smartpointer() //析构函数
- {
- delete _ptr;
- }
- };
- // 定义仅由HasPtr类使用的U_Ptr类,用于封装使用计数和相关指针
- // 这个类的所有成员都是private,我们不希望普通用户使用U_Ptr类,所以它没有任何public成员
- // 将HasPtr类设置为友元,使其成员可以访问U_Ptr的成员
- class U_Ptr
- {
- friend class HasPtr;
- int *ip;
- size_t use;
- U_Ptr(int *p) : ip(p) , use(1)
- {
- cout << "U_ptr constructor called !" << endl;
- }
- ~U_Ptr()
- {
- delete ip;
- cout << "U_ptr distructor called !" << endl;
- }
- };
条件就是引用计数。如果该对象被两个指针所指,那么删除其中一个指针,并不会调用该指针的析构函数,因为此时还有另外一个指针指向该对象。看来,智能指针主要是预防不当的析构行为,防止出现悬垂指针。
如上图所示,HasPtr就是智能指针,U_Ptr为计数器;里面有个变量use和指针ip,use记录了*ip对象被多少个HasPtr对象所指。假设现在又两个HasPtr对象p1、p2指向了U_Ptr,那么现在我delete p1,use变量将自减1, U_Ptr不会析构,那么U_Ptr指向的对象也不会析构,那么p2仍然指向了原来的对象,而不会变成一个悬空指针。当delete p2的时候,use变量将自减1,为0。此时,U_Ptr对象进行析构,那么U_Ptr指向的对象也进行析构,保证不会出现内存泄露。
包含指针的类需要特别注意复制控制,原因是复制指针时只复制指针中的地址,而不会复制指针指向的对象。
大多数C++类用三种方法之一管理指针成员
(1)不管指针成员。复制时只复制指针,不复制指针指向的对象。当其中一个指针把其指向的对象的空间释放后,其它指针都成了悬浮指针。这是一种极端
(2)当复制的时候,即复制指针,也复制指针指向的对象。这样可能造成空间的浪费。因为指针指向的对象的复制不一定是必要的。
(3) 第三种就是一种折中的方式。利用一个辅助类来管理指针的复制。原来的类中有一个指针指向辅助类,辅助类的数据成员是一个计数器和一个指针(指向原来的)(此为本次智能指针实现方式)。
其实,智能指针的引用计数类似于java的垃圾回收机制:java的垃圾的判定很简答,如果一个对象没有引用所指,那么该对象为垃圾。系统就可以回收了。
HasPtr 智能指针的声明如下,保存一个指向U_Ptr对象的指针,U_Ptr对象指向实际的int基础对象,代码如下:
- #include<iostream>
- using namespace std;
- // 定义仅由HasPtr类使用的U_Ptr类,用于封装使用计数和相关指针
- // 这个类的所有成员都是private,我们不希望普通用户使用U_Ptr类,所以它没有任何public成员
- // 将HasPtr类设置为友元,使其成员可以访问U_Ptr的成员
- class U_Ptr
- {
- friend class HasPtr;
- int *ip;
- size_t use;
- U_Ptr(int *p) : ip(p) , use(1)
- {
- cout << "U_ptr constructor called !" << endl;
- }
- ~U_Ptr()
- {
- delete ip;
- cout << "U_ptr distructor called !" << endl;
- }
- };
- class HasPtr
- {
- public:
- // 构造函数:p是指向已经动态创建的int对象指针
- HasPtr(int *p, int i) : ptr(new U_Ptr(p)) , val(i)
- {
- cout << "HasPtr constructor called ! " << "use = " << ptr->use << endl;
- }
- // 复制构造函数:复制成员并将使用计数加1
- HasPtr(const HasPtr& orig) : ptr(orig.ptr) , val(orig.val)
- {
- ++ptr->use;
- cout << "HasPtr copy constructor called ! " << "use = " << ptr->use << endl;
- }
- // 赋值操作符
- HasPtr& operator=(const HasPtr&);
- // 析构函数:如果计数为0,则删除U_Ptr对象
- ~HasPtr()
- {
- cout << "HasPtr distructor called ! " << "use = " << ptr->use << endl;
- if (--ptr->use == 0)
- delete ptr;
- }
- // 获取数据成员
- int *get_ptr() const
- {
- return ptr->ip;
- }
- int get_int() const
- {
- return val;
- }
- // 修改数据成员
- void set_ptr(int *p) const
- {
- ptr->ip = p;
- }
- void set_int(int i)
- {
- val = i;
- }
- // 返回或修改基础int对象
- int get_ptr_val() const
- {
- return *ptr->ip;
- }
- void set_ptr_val(int i)
- {
- *ptr->ip = i;
- }
- private:
- U_Ptr *ptr; //指向使用计数类U_Ptr
- int val;
- };
- HasPtr& HasPtr::operator = (const HasPtr &rhs) //注意,这里赋值操作符在减少做操作数的使用计数之前使rhs的使用技术加1,从而防止自我赋值
- {
- // 增加右操作数中的使用计数
- ++rhs.ptr->use;
- // 将左操作数对象的使用计数减1,若该对象的使用计数减至0,则删除该对象
- if (--ptr->use == 0)
- delete ptr;
- ptr = rhs.ptr; // 复制U_Ptr指针
- val = rhs.val; // 复制int成员
- return *this;
- }
- int main(void)
- {
- int *pi = new int(42);
- HasPtr *hpa = new HasPtr(pi, 100); // 构造函数
- HasPtr *hpb = new HasPtr(*hpa); // 拷贝构造函数
- HasPtr *hpc = new HasPtr(*hpb); // 拷贝构造函数
- HasPtr hpd = *hpa; // 拷贝构造函数
- cout << hpa->get_ptr_val() << " " << hpb->get_ptr_val() << endl;
- hpc->set_ptr_val(10000);
- cout << hpa->get_ptr_val() << " " << hpb->get_ptr_val() << endl;
- hpd.set_ptr_val(10);
- cout << hpa->get_ptr_val() << " " << hpb->get_ptr_val() << endl;
- delete hpa;
- delete hpb;
- delete hpc;
- cout << hpd.get_ptr_val() << endl;
- return 0;
- }
假设现在又两个智能指针p1、 p2,一个指向内容为42的内存,一个指向内容为100的内存,如下图:
现在,我要做赋值操作,p2 = p1。对比着上面的
- HasPtr& operator=(const HasPtr&); // 赋值操作符
- ++rhs.ptr->use; // 增加右操作数中的使用计数
- if (--ptr->use == 0)
- delete ptr;
此时,条件成立。因为u2的use为1。那么,运行U_Ptr的析构函数,而在U_Ptr的析构函数中,做了delete ip操作,所以释放了内存,不会有内存泄露的问题。
接下来的操作很自然,无需多言:
- ptr = rhs.ptr; // 复制U_Ptr指针
- val = rhs.val; // 复制int成员
- return *this;
而还要注意的是,重载赋值操作符的时候,一定要注意的是,检查自我赋值的情况。
如图所示:
此时,做p1 = p1的操作。那么,首先u1.use自增1,为2;然后,u1.use自减1,为1。那么就不会执行delete操作,剩下的操作都可以顺利进行。按《C++ primer》说法,“这个赋值操作符在减少左操作数的使用计数之前使rhs的使用计数加1,从而防止自身赋值”。哎,反正我是那样理解的。当然,赋值操作符函数中一来就可以按常规那样:
- if(this == &rhs)
- return *this;
转载出处http://www.cnblogs.com/TianFang/archive/2008/09/19/1294521.html
Boost智能指针——shared_ptr
boost::scoped_ptr虽然简单易用,但它不能共享所有权的特性却大大限制了其使用范围,而boost::shared_ptr可以解决这一局限。顾名思义,boost::shared_ptr是可以共享所有权的智能指针,首先让我们通过一个例子看看它的基本用法:
#include <string>
#include <iostream>
#include <boost/shared_ptr.hpp>
class implementation
{
public:
~implementation() { std::cout <<"destroying implementation\n"; }
void do_something() { std::cout << "did something\n"; }
};
void test()
{
boost::shared_ptr<implementation> sp1(new implementation());
std::cout<<"The Sample now has "<<sp1.use_count()<<" references\n";
boost::shared_ptr<implementation> sp2 = sp1;
std::cout<<"The Sample now has "<<sp2.use_count()<<" references\n";
sp1.reset();
std::cout<<"After Reset sp1. The Sample now has "<<sp2.use_count()<<" references\n";
sp2.reset();
std::cout<<"After Reset sp2.\n";
}
void main()
{
test();
}
该程序的输出结果如下:
The Sample now has 1 references
The Sample now has 2 references
After Reset sp1. The Sample now has 1 references
destroying implementation
After Reset sp2.
可以看到,boost::shared_ptr指针sp1和sp2同时拥有了implementation对象的访问权限,且当sp1和sp2都释放对该对象的所有权时,其所管理的的对象的内存才被自动释放。在共享对象的访问权限同时,也实现了其内存的自动管理。
boost::shared_ptr的内存管理机制:
boost::shared_ptr的管理机制其实并不复杂,就是对所管理的对象进行了引用计数,当新增一个boost::shared_ptr对该对象进行管理时,就将该对象的引用计数加一;减少一个boost::shared_ptr对该对象进行管理时,就将该对象的引用计数减一,如果该对象的引用计数为0的时候,说明没有任何指针对其管理,才调用delete释放其所占的内存。
上面的那个例子可以的图示如下:
-
sp1对implementation对象进行管理,其引用计数为1
-
增加sp2对implementation对象进行管理,其引用计数增加为2
-
sp1释放对implementation对象进行管理,其引用计数变为1
-
sp2释放对implementation对象进行管理,其引用计数变为0,该对象被自动删除
boost::shared_ptr的特点:
和前面介绍的boost::scoped_ptr相比,boost::shared_ptr可以共享对象的所有权,因此其使用范围基本上没有什么限制(还是有一些需要遵循的使用规则,下文中介绍),自然也可以使用在stl的容器中。另外它还是线程安全的,这点在多线程程序中也非常重要。
转自http://www.tuicool.com/articles/Ff2M3m7
使用 boost::shared_ptr的注意事项
(1) 不要把一个原生指针给多个shared_ptr管理
int* ptr = new int;
boost::shared_ptr<int> p1(ptr);
boost::shared_ptr<int> p2(ptr);
这样做会导致ptr会被释放两次。在实际应用中,保证除了第一个shared_ptr使用ptr定义之外,后面的都采用p1来操作,就不会出现此类问题。
(2) 不要在函数实参里创建shared_ptr
function(shared_ptr<int>(new int), g()); //有缺陷
//可能的过程是先new int,然后调g(),g()发生异常,shared_ptr<int>没有创建,int内存泄露
//推荐写法
shared_ptr<int> p(new int());
f(p, g());
(3) shared_ptr作为被保护的对象的成员时,小心因循环引用造成无法释放资源。
class parent;
class children;
typedef boost::shared_ptr<parent> parent_ptr;
typedef boost::shared_ptr<children> children_ptr;
class parent {
public:
children_ptr children;
};
class children {public:
parent_ptr parent;
};
void test()
{
boost::shared_ptr<parent> father( new parent);
boost::shared_ptr<children> son(new children);
father->children = son; //user_count() == 2
son->parent = father; //user_count() == 2
}
在这个例子中,出现了循环引用计数,赋值后use_count()变为2,出函数后变为1,资源无法被释放。boost的解决方法是采用 weak_ptr来保存。
class parent {public:
boost::weak_ptr<children> children;
};
class children {public:
boost::weak_ptr<father> parent;
};
因为boost不会影响weak_ptr不会影响引用计数,不会造成循环引用计数。
(4) 不要把this指针给shared_ptr
将this指针赋给shared_ptr会出现this指针被释放两次的危险,如下面的代码,会在t释放时析构一次,shared_ptr释放时析构一次。
class test {
public:
boost::shared_ptr<test> pget() {
return boost::shared_ptr<test>(this);
}
};
test t;
boost::shared_ptr<test> pt = t.pget();
boost库提供的解决方法是:使用enable_shared_from_this来实现。
class test : public boost::enable_shared_from_this<test> {
public:
boost::shared_ptr<test> pget() {
return shared_from_this();
}
};
test t;
boost::shared_ptr<test> pt = t.pget();
九、深拷贝与浅拷贝
转自http://www.cnblogs.com/CHYGO/articles/1916427.html
深拷贝与浅拷贝需要知道的基本概念和知识:
(1)什么时候用到拷贝函数?
b.一个对象以值传递的方式从函数返回;
如果在类中没有显式地声明一个拷贝构造函数,那么,编译器将会自动生成一个默认的拷贝构造函数,该构造函数完成对象之间的位拷贝。位拷贝又称浅拷贝
(2)什么叫深拷贝?什么是浅拷贝?两者异同?
自定义拷贝构造函数是一种良好的编程风格,它可以阻止编译器形成默认的拷贝构造函数,提高源码效率。(3)深拷贝好还是浅拷贝好?
如果实行位拷贝,也就是把对象里的值完全复制给另一个对象,如A=B。这时,如果B中有一个成员变量指针已经申请了内存,那A中的那个成员变量也指向同一块内存。这就出现了问题:当B把内存释放了(如:析构),这时A内的指针就是野指针了,出现运行错误。
2万+

被折叠的 条评论
为什么被折叠?



