Given a binary search tree, write a function kthSmallest
to find the kth
smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
- The optimal runtime complexity is O(height of BST).
如果每次用递归来计算左子树或右子树的结点个数,类似于二分法,但每次计算左子树节点个数会有很多重复开销;如果按照提示,改变TreeNode的存储结构,再添加一个leftCount属性,那么就比较容易计算出结果了。
下面提供了一种用stack来保存节点的方法,思想是将节点入栈,保证从最小节点开始遍历直到找到第k个,时间复杂度是O(k);
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
stack<TreeNode *> st;
TreeNode* p = root;
while(p || !st.empty()) {
while(p) {
st.push(p);
p = p->left;
}
p = st.top();
if(--k == 0) {
return p->val;
}
st.pop();
p = p->right;
}
}
};