Discrete Logging
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 7598 | Accepted: 3208 |
Description
Given a prime P, 2 <= P < 2
31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.
Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input
5 2 1 5 2 2 5 2 3 5 2 4 5 3 1 5 3 2 5 3 3 5 3 4 5 4 1 5 4 2 5 4 3 5 4 4 12345701 2 1111111 1111111121 65537 1111111111
Sample Output
0 1 3 2 0 3 1 2 0 no solution no solution 1 9584351 462803587
Hint
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
裸题 注意开long long
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=10*x+ch-'0';ch=getchar();}
return x*f;
}
void print(ll x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}
ll P,B,N;
map<ll,ll> mp;
inline int qpow(ll x,ll y)
{
ll res(1);
while(y)
{
if(y&1) res=1ll*res*x%P;
x=1ll*x*x%P;
y>>=1;
}
return res;
}
void BSGS()
{
B%=P;N%=P;
if(!B && !N){puts("1");return ;}
if(!B){puts("no solution");return ;}
mp.clear();
ll m=ceil(sqrt(P-1));
for(int i=1;i<=m;++i)
N=N*B%P,mp[N]=i;
ll ine(1),tmp=qpow(B,m);
for(int i=1,j;i<=m;++i)
{
ine=ine*tmp%P;
if(j=mp[ine])
{
print((i*m-j)%(P-1));puts("");
return ;
}
}
puts("no solution");
}
int main()
{
while(scanf("%lld%lld%lld",&P,&B,&N)>0)
BSGS();
return 0;
}