【评测】IDT CRISPR核酸内切酶解决方案

IDT基因组学领导者:定制核酸生产与CRISPR技术应用
IDT作为基因组学领域的先驱,以其在DNA合成领域的专长,推动了CRISPR基因编辑、合成生物学等技术的发展。其产品广泛应用于癌症研究及遗传疾病治疗,全球范围内的众多科研人员依赖其GMP服务。亚洲、欧洲和北美工厂每日生产大量寡核苷酸,可通过'泽平科技'公众号获取更多信息。

IDT 成立于 1989年,是基因组学领域开发的领先者,也是公认的定制核酸生产行业的领导者。IDT 凭借在 DNA 合成领域的领导能力,为基因组学应用开发了专有技术,例如下一代测序、CRISPR 基因组编辑、合成生物学、数字 PCR 和 RNA 干扰。通过 GMP 服务,IDT的产品被科学家用于研究多种癌症以及大多数遗传性和传染性疾病。IDT 亚洲、欧洲和北美洲设有工厂,为一百多个国家及地区的超过十二万名生命科学界研究人员提供服务,每天生产的寡核苷酸数量 超过七万份

 

 

 

技术优势

 

 

 

 

技术产品方案:

 

 

以上产品请微信搜索“泽平科技”公众号进入咨询。

 

参考文献:

  • Kim KW, Tang NH, et al. (2018) A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron, 97 : 1–9.
  • Tröder SE, Eber LK, et al. (2018) An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes.PLoS One, 13 (5) : e0196891.
  • Brinkman EK, Kousholt AN, et al. (2018) Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. doi: 10.1093/nar/gky164
  • Gregg E. Homanics. (2018) Gene edited CRISPy critters for alcohol research. Alcohol. doi: 10.1016/j.alcohol.2018.03.001
  • Andersson M, Turesson H, et al. (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant. doi: 10.1111/ppl.12731
  • Ohtsuka M, Sato M, et al. (2018) i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol, 19 : 25.
  • Riddle MR, Aspiras AC, et al. (2018) Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature, 555 : 647–651.
  • Seki A, Rutz S. (2018) Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. doi: 10.1084/jem.20171626
  • Han X, Liu Z, et al. (2017) Cas9 ribonucleoprotein delivery via microfluidic cell-deformation chip for human T-Cell genome editing and immunotherapy . Adv Biosys, 1 : 1600007.
  • Al Abdallah Q, Ge W, Fortwendel JR. (2017) A simple and universal system for gene manipulation in Aspergillus fumigatus: in vitro-assembled Cas9 guide RNA ribonucleoproteins coupled with microhomology repair templates. mSphere, 2 : e00446–17.
  • di Pietro F, Valon L, et al.. (2017) An RNAi screen in a novel model of oriented divisions identifies the actin-capping protein Z β as an essential regulator of spindle orientation. Curr Biol, 27 : 2452–2464.
  • Nachmanson D, Lian S, et al. (2017) CRISPR-DS: An efficient, low DNA input method for ultra-accurate sequencing. bioRxiv. doi: 10.1101/207027
  • Schwinn MK, Machleidt T, et al. (2017) CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem Biol.doi: 10.1021/acschembio.7b00549
  • Xu MM, Pu Y, et al.. (2017) Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity, 47 : 363–37.
  • Mikheikin A, Olsen A, et al. (2017) DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun, 8 : 1665.
  • Quadros RM, Miura H, et al. (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins . Genome Biology, 18 : 92.
  • Wefers B, Bashir S, et al. (2017) Gene editing in mouse zygotes using the CRISPR/Cas9 system. Methods, 121–122 : 55–67.
  • Rivera-Torres N, Banas K, et al.. (2017) Insertional mutagenesis by CRISPR/Cas9 ribonucleoprotein gene editing in cells targeted for point mutation repair directed by short single-stranded DNA oligonucleotides . PLoS One, 12 : e0169350.
  • Agudelo D, Duringer A, et al.. (2017) Marker-free coselection for CRISPR-driven genome editing in human cells. Nature Methods, 14 :615–620.
  • Luo L, Bokil N, et al.. (2017) SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages . Nat Commun, 8 : 14133.
  • Cuellar TL, Herzner AM, et al. (2017) Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J Cell Biol, 216 : 3535–3549.
  • Jacobi AM, Rettig GR, Turk R, Collingwood MA, Zeiner SA, Quadros RM, Harms DW, Bonthuis PJ, Gregg C, Ohtsuka M, Gurumurthy CB, Behlke MA. (2017) Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods, 121–122 : 16–28.
  • Kohler S, Wojcik M, et al.. (2017) Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact Caenorhabditis elegans tissue . Proc Natl Acad Sci USA, 114 : E4734–E4743.
  • Grahl N, Demers EG, et al.. (2017) Use of RNA-protein complexes for genome editing in non-albicans Candida species . mSphere, 2 :e00218-17.

 

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值