在Python中轴是比较难懂概念,先从坐标轴说起。
n 维空间里有 n 个坐标轴,并且坐标轴互相垂直,每一个点相对于一条坐标轴都有唯一的一个坐标值。对同一条坐标轴来说,坐标值相同的点在同一个 n-1 维的“平面”上。任意取一个“平面”,我们就能定义“同一个坐标轴上的点”,这些点在“平面”上的投影相同,同一个坐标轴上的点组成的线是与坐标轴平行的。而所谓的延轴计算实际上是降维的过程,同一个坐标轴上的点合并成一个点,这样n维空间就变成了 n-1 维空间。
具体到 numpy 中的多维数组来说,轴即是元素坐标的索引。比如,第0轴即是第1个索引,延0轴计算就是去掉坐标中的第一个索引。过程就是
- 遍历其他索引的所有可能组合
- 取出一个组合,保持值不变,遍历第一个索引所有可能值
- 根据索引可以获得了同一个轴上的所有元素
- 对他们进行计算得到最后的元素
- 所有组合的最后结果组到一起就是最后的 n-1 维数组
沿轴计算过程,可以当做沿哪一个方向进行投影再进行计算。所以如果一个多维数组的 shape 是 (a1, a2, a3, a4), 那么延轴0计算最后的数组shape 是 (a2, a3, a4), 延轴1计算最后的数组shape是 (a1, a3, a4)
1,1],[2,1],[3,1]],[[4,1],[5,1],[6,1]],[[7,1],[8,1],[9,1]]])a = array([[[a.shape(3, 3, 2)aarray([[[1, 1],[2, 1],[3, 1]],[[4, 1],[5, 1],[6, 1]],[[7, 1],[8, 1],[9, 1]]])0)sum(a, axis=array([[12, 3],[15, 3],[18, 3]])1)sum(a, axis=array([[ 6, 3],[15, 3],[24, 3]])2)sum(a, axis=array([[ 2, 3, 4],[ 5, 6, 7],[ 8, 9, 10]])