60. Permutation Sequence

本文介绍了一种高效算法,用于解决给定数字n和k,寻找从1到n的所有可能排列中第k个排列的问题。算法通过分解阶乘和使用列表来移除已用数字,实现了O(nk)的时间复杂度和O(k)的空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

“123”
“132”
“213”
“231”
“312”
“321”
Given n and k, return the kth permutation sequence.

Note:

Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.
Example 1:

Input: n = 3, k = 3
Output: “213”
Example 2:

Input: n = 4, k = 9
Output: “2314”

Problem URL


Solution

给一个1-9的数字n,找到n!的第k个数字,k的范围是1-n!。

We could find that n! is composed of n * (n - 1)! using this we could use a factors[n + 1] to store 0! to n! and a list number denotes 1 - 9 for easy remove. After initialize them, we use k to divide factors[n-1] which would help us get the first digit of kth number. Append it to a stringbuilder and remove it from numbers. Then k should minus index multiple factors[n - 1].

Code
class Solution {
    public String getPermutation(int n, int k) {
        int[] factors = new int[n + 1];
        List<Integer> numbers = new ArrayList<>();
        StringBuilder sb = new StringBuilder();
        //initialize factors
        factors[0] = 1;
        int sum = 1;
        for (int i = 1; i <= n; i++){
            sum *= i;
            factors[i] = sum;
        }
        //initialize numbers for get the answer;
        for (int i = 1; i <= n; i++){
            numbers.add(i);
        }
        //start find kth permuation, let k--.
        k--;        
        for (int i = 1; i <= n; i++){
            int index = k / factors[n - i];
            sb.append(String.valueOf(numbers.get(index)));
            numbers.remove(index);
            k -= index * factors[n - i];
        }
        
        return sb.toString();
    }
}

Time Complexity: O(nk)
Space Complexity: O(k)


Review
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值