692. Top K Frequent Words

本文介绍了一种使用哈希映射和优先队列的数据结构来找出字符串数组中出现频率最高的k个字符串的算法。通过实例展示了如何实现该算法,并分析了其时间复杂度为O(nlogk),空间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Given a non-empty list of words, return the k most frequent elements.

Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.

Example 1:
Input: [“i”, “love”, “leetcode”, “i”, “love”, “coding”], k = 2
Output: [“i”, “love”]
Explanation: “i” and “love” are the two most frequent words.
Note that “i” comes before “love” due to a lower alphabetical order.
Example 2:
Input: [“the”, “day”, “is”, “sunny”, “the”, “the”, “the”, “sunny”, “is”, “is”], k = 4
Output: [“the”, “is”, “sunny”, “day”]
Explanation: “the”, “is”, “sunny” and “day” are the four most frequent words,
with the number of occurrence being 4, 3, 2 and 1 respectively.
Note:
You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
Input words contain only lowercase letters.
Follow up:
Try to solve it in O(n log k) time and O(n) extra space.

Problem URL


Solution

找到一个stirng数组中,出现次数前k多的string。使用hash map 和 priority queue。

Using a hash map to build the relationship from word to frequence. Then use a priority queue to sort these Map.Entry<> from less frequent to most frequent and ordered anti-dictionary. When pq.size() > k, poll(). Then the remaining words in qp is the reverse of answer. Add them to 0 index of result list.

Code
class Solution {
    public List<String> topKFrequent(String[] words, int k) {
        List<String> res = new ArrayList<>();
        Map<String, Integer> map = new HashMap<>();
        for (String word : words){
            if (map.containsKey(word)){
                map.put(word, map.get(word) + 1);
            }
            else{
                map.put(word, 1);
            }
        }
        
        PriorityQueue<Map.Entry<String, Integer>> pq = new PriorityQueue(new Comparator<Map.Entry<String, Integer>>(){
            @Override
            public int compare(Map.Entry<String, Integer> a, Map.Entry<String, Integer> b){
                if (a.getValue() == b.getValue()){
                    return b.getKey().compareTo(a.getKey());
                }
                else{
                    return a.getValue() - b.getValue();
                }
            }
        });
        
        for (Map.Entry<String, Integer> m : map.entrySet()){
            pq.offer(m);
            if (pq.size() > k){
                pq.poll();
            }
        }
        
        while(!pq.isEmpty()){
            res.add(0, pq.poll().getKey());
        }
        return res;
    }
}

Time Complexity: O(nlogk)
Space Complexity: O(n)


Review

We could create a priority queue much easier when using -> function.

PriorityQueue<T> pq = new PriorityQueue<>(
	 (a,b) -> a.getValue()==b.getValue() ? b.getKey().compareTo(a.getKey()) : a.getValue()-b.getValue()
);

To iterate a map using for loop, we have to convert it to

map.entrySet();

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值