问题描述
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
思路分析
给一个二维数组,数组中元素大于0,找到一条从左上到右下的最短路径。只能向下或向右移动。
简单的动态规划题,每一个格子距离是min(up, left) + grid[i][j]。计算返回右下角的值返回即可。要注意跳过grid[0][0],作为递归的开始条件。
代码
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
if (m == 0) return 0;
int n = grid[0].size();
for (int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if (i == 0 && j == 0)
continue;
int up = j - 1 >= 0 ? grid[i][j - 1] : INT_MAX;
int left = i - 1 >= 0 ? grid[i - 1][j] : INT_MAX;
grid[i][j] = min(up, left) + grid[i][j];
}
}
return grid[m - 1][n - 1];
}
};
时间复杂度:
O(m+n)
空间复杂度:
O(1)
反思
可以不in-place的做,就需要用一个二维数组dp保存结果值。