问题描述
Write an algorithm to determine if a number is “happy”.
A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.
Example: 19 is a happy number
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
Credits:
Special thanks to @mithmatt and @ts for adding this problem and creating all test cases.
思路分析
将一个数的每一位的平方加和起来,不断重复,如果最后的到1,那这个数就是happy number。判断一个数是不是happy number。
设置循环10次,每次迭代计算置换后的值,如果位1就true,否则10次之后返回false。
代码
class Solution {
public:
bool isHappy(int n) {
int count = 10;
while(count){
n = replace(n);
if (n == 1)
return true;
count--;
}
return false;
}
int replace(int n){
int result = 0;
while(n != 0){
result += pow(n%10, 2);
n = n/10;
}
return result;
}
};
时间复杂度:
O(logn)
空间复杂度:
O(1)
反思
这个方法竟然可以,也是瞎猫撞上死耗子了。主要需要优化的地方在于如何判断这数肯定不是happy的了。
class Solution {
public:
bool isHappy(int n) {
int fast, slow;
fast = slow = n;
do{
slow = replace(slow);
fast = replace(fast);
fast = replace(fast);
if (fast == 1)
return true;
}while (slow != fast);
return false;
}
int replace(int n){
int result = 0;
while(n != 0){
result += pow(n%10, 2);
n = n/10;
}
return result;
}
};
时间复杂度:
O(n)
空间复杂度:
O(1)
在Discussion区发现的惊为天人的做法,使用两个指针,fast指针每个循环多计算一遍,比slow的计算速度要快。如果slow与fast相同了,那表明要么n稳定在1了;要么存在一个环,就像判断两条链表在哪了相交一样,fast会追上slow。