狗还是机器人?谁在屏幕后和你对话?新研究开发仿真面对面对话系统 | 一周AI最火论文

大数据文摘专栏作品

作者:Christopher Dossman

编译:Jiaxu、Joey、云舟

呜啦啦啦啦啦啦啦大家好,拖更的AIScholar Weekly栏目又和大家见面啦!

AI ScholarWeekly是AI领域的学术专栏,致力于为你带来最新潮、最全面、最深度的AI学术概览,一网打尽每周AI学术的前沿资讯。

每周更新,做AI科研,每周从这一篇开始就够啦!

本周关键词:仿真、数据可视化、开源机器人平台


本周热门学术研究


基于深度神经网络的仿真面对面对话系统


近日,CloudMinds和北京航空航天大学的研究人员基于深度学习提出了一种新的仿真面对面对话系统。CloudMinds是一家在机器人和云服务领域的领军企业,致力于成为针对各种机器人模型需求的供应商。


该会话系统包括用于收听和说话的两个序列到序列模型以及基于虚拟代理合成器的生成性对抗网络(GAN)模型。


当虚拟代理与人通信时,语音音频和面部图像被输入到系统中。面部图像由面部解析模块处理,产生面部动作和姿势。然后将生成的信息传递到基于序列到序列的收听模型中。当虚拟代理在收听时,输出被馈送到合成器中以产生逼真的面部图像作为非语言反应。



语音识别模型将语音音频变换为文本,然后传递到会话模块中以生成响应语句,该响应语句被传递到文本到语音(TTS)模块以合成语音。响应语句被传递到序列到序列的说话模型,其输出也被输入到虚拟合成器中以产生逼真的面部图像,从而呼应语音内容。头像合成器则用于在整个对话期间收听和说话。


本文显著改进了传统的基于3D模型的成果。为了训练模型,研究人员收集了大约700个ESPN视频,其中包含来自YouTube的面对面对话场景。


与传统3D模型的生成结果相比,该模型所生成的面部图像更接近现实。毋庸置疑的是,在使得会话更加逼真自然的领域上,该系统还有很大的潜力可供挖掘,未来它还可用于实现个性化表情会话。


原文:

https://arxiv.org/abs/1908.07750


使用DISCo方法改进钙成像分析


本文中,德国海德堡大学跨学科科学计算中心(IWR)的研究人员介绍了DISCo方法,这是一种使用深度学习,实例分割和相关性研究的新方法,可用于钙成像分析中的细胞分割步骤。


 

DISCo将深度学习网络的优势与最先进的实例分割程序相结合,允许直接提取单元实例而无需任何复杂的后处理步骤。他们还以非常有效的方式利用钙成像视频的时间背景来计算像素之间的分段相关性。然后以摘要图像的形式将此时间信息与基于形状的信息相结合。


DISCo的最大优势在于能够结合相关性和图像特征,而不只依赖于其中一种方法。因此,DISCo可以通过在Neurofinder数据集上仅使用单个模型来使神经研究人员获得良好的整体性能。此外,当在几个数据集系列上训练单个网络时,研究人员能够超越在Neurofinder数据集上训练的所有其他方法。


原文:

https://arxiv.org/abs/1908.07957


用于科研教育的低成本开源机器人赛车平台


华盛顿大学保罗G.艾伦计算机科学与工程学院的研究人员最近介绍了MuSHR,即多代理的非完整赛车系统。MuSHR是一个低成本、开源的机器人赛车平台,致力于教育和研究,由MuSHR的个人机器人实验室开发,旨在促进机器人领域的公民化。作为一个低成本的平台,参与者可以通过说明,开源文档和动手教程参与其中。




赛车的硬件设计基于一系列现成的组件,这些组件可以从世界各地的线上和线下硬件商店中轻松地找到,而软件架构则是在个人机器人实验室中开发的。该平台为华盛顿大学的移动机器人课程开发了一套演示系统和许多宝贵的实践经验,是机器人平台开发的里程碑。


MuSHR的低成本开发模式和综合的文档记录是宝贵的机器人研究资源。该平台向学术研究实验室,机器人研究者及机器人爱好者等展示各种机器人研究项目提供了一个出色的测试平台。


MuSHR具有开源指令和教程带领用户完成硬件开发。文档托管在Github上,免费供一般公众下载使用。


代码:

https://github.com/prl-mushr

原文:

https://arxiv.org/abs/1908.08031


三维扫描与CAD对象的联合嵌入


近日,慕尼黑工业大学、斯坦福大学以及 Facebook 人工智能研究所共同提出了一种学习三维扫描和CAD之间的联合嵌入空间的技术。而在这两者中有很多联系紧密且十分相似的事物。这一学习方法基于一种全新的3D CNN 技术,通过学习联合嵌入空间中事物的相似性来实现嵌入。


  

为了学习一个扫描对象和CAD模型可以相互交织的共享空间,研究人员提出使用堆叠沙漏的方式将前景、背景与扫描对象分开,并将其转换为完整的类CAD表示,以此将它整合到共享嵌入空间中。这样操作得到的嵌入空间可以用于CAD模型检索。为了更好地完成这一任务,研究人员引入了一个全新数据集,其中包括了扫描CAD相似性注释。在这一数据集的帮助下,他们能够对CAD模型检索进行细粒度的评估,并对杂乱、嘈杂部分进行扫描。


这一新型学习方式比现有的CAD模型在实例检索上的准确率高出10% 以上。


因此,它在CAD模型检索方面的表现比原有模型更好。学习这样的联合扫描- CAD嵌入空间不仅为CAD模型检索提供了新的解决方案,也为这两个领域之间的知识映射提供了新的可能性。


当然,虽然这个技术在扫描与学习CAD对象空间方面非常有效,但它仍然有很多局限性——目前研究人员仅考虑了扫描和CAD对象领域中对象的几何形状;而这篇论文中未提及的颜色信息可能是联合嵌入或CAD模型检索的另一强大信号。


原文:

https://arxiv.org/abs/1908.06989


Google发布Turbo,可视化工具的里程碑式突破


Turbo 是由Google研究人员提出的一种着色工具,它既有Jet的优势功能,同时也解决了Jet的一些短板,例如细节错误、条带、和颜色混淆等。

             

在开发人员的精心调试下,Turbo的强大性能能够胜任各种可视化任务。在开发过程中,研究人员们制作了一个简单的交互界面,在其中他们能够使用7节立方条来调整RGB曲线,同时将样本结果与其他知名彩绘程序的结果进行比较。


Turbo可以作为顺序和发散的可视化工具,因此它很适合开发人员保存在自己的“工具箱”中。它用于解决均匀性不那么重要的数据可视化任务非常有效,尤其是在需要展现强烈对比的情况下。


Google的团队将这个工具用于实现视差贴图、误差贴图以及许多其他标量的可视化中。您可以在下方链接中找到在Python和C/C++ 中的使用这几技术的方法,以及多项式逼近的方法——用于可能查表查询不太方便的情况中。


Python: 

https://gist.github.com/mikhailov-work/ee72ba4191942acecc03fe6da94fc73f

C/C++: 

https://gist.github.com/mikhailov-work/6a308c20e494d9e0ccc29036b28faa7a

Polynomial approximation:  

https://gist.github.com/mikhailov-work/0d177465a8151eb6ede1768d51d476c7


原文:

https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html


其他爆款论文


使用GANS突破图像扩展:

https://arxiv.org/abs/1908.07007v1


AI着装?坐在家里就能看着自己穿大牌衣服走跑跳:

https://arxiv.org/abs/1908.06903


Google 人工智能团队通过循环神经网络传感器提高了说话人的分类性能:

https://ai.googleblog.com/2019/08/joint-speech-recognition-and-speaker.html


如何通过机器学习算法设计一个原创雕塑:

https://arxiv.org/pdf/1908.07587.pdf


使用基于学习的框架从2D鸟瞰图中估计事物的边界框架:

https://arxiv.org/abs/1908.07085


AI新闻


IBM和Linux合作推广公平且有效的人工智能工具:

https://www.zdnet.com/article/ibm-joins-linux-foundation-ai-to-promote-open-source-trusted-ai-workflows/


2019 企业级人工智能趋势:现状与未来:
https://www.forbes.com/sites/danielnewman/2019/08/21/4-growing-enterprise-ai-trends-where-are-we-now-and-where-are-we-going/#5dead43c6280


人工智能正在加速改变商业广告模式:
https://www.forbes.com/sites/forbesagencycouncil/2019/08/21/how-artificial-intelligence-is-transforming-digital-marketing/#47bae7f221e1


MIT的人工智能技术帮助现代数据中心实现高性能运转:
https://news.mit.edu/2019/decima-data-processing-0821


专栏作者介绍

Christopher Dossman是Wonder Technologies的首席数据科学家,在北京生活5年。他是深度学习系统部署方面的专家,在开发新的AI产品方面拥有丰富的经验。除了卓越的工程经验,他还教授了1000名学生了解深度学习基础。

LinkedIn:

https://www.linkedin.com/in/christopherdossman/


本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【微电网】【创点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文围绕基于非支配排序的蜣螂优化算法(NSDBO)在微电网多目标优化调度中的应用展开研究,提出了一种改进的智能优化算法以解决微电网系统中经济性、环保性能源效率等多重目标之间的权衡问题。通过引入非支配排序机制,NSDBO能够有效处理多目标优化中的帕累托前沿搜索,提升解的多样性收敛性,并结合Matlab代码实现仿真验证,展示了该算法在微电网调度中的优越性能实际可行性。研究涵盖了微电网典型结构建模、目标函数构建及约束条件处理,实现了对风、光、储能及传统机组的协同优化调度。; 适合人群:具备一定电力系统基础知识Matlab编程能力的研究生、科研人员及从事微电网、智能优化算法应用的工程技术人员;熟悉优化算法与能源系统调度的高年级本科生亦可参考。; 使用场景及目标:①应用于微电网多目标优化调度问题的研究仿真,如成本小化、碳排放低与供电可靠性高之间的平衡;②为型智能优化算法(如蜣螂优化算法及其改进版本)的设计与验证提供实践案例,推动其在能源系统中的推广应用;③服务于学术论文复现、课题研究或毕业设计中的算法对比与性能测试。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注NSDBO算法的核心实现步骤与微电网模型的构建逻辑,同时可对比其他多目标算法(如NSGA-II、MOPSO)以深入理解其优势与局限,进一步开展算法改进或应用场景拓展。
内容概要:本文详细介绍了使用ENVI与SARscape软件进行DInSAR(差分干涉合成孔径雷达)技术处理的完整流程,涵盖从数据导入、预处理、干涉图生成、相位滤波与相干性分析、相位解缠、轨道精炼与重去平,到终相位转形变及结果可视化在内的全部关键步骤。文中以Sentinel-1数据为例,系统阐述了各环节的操作方法与参数设置,特别强调了DEM的获取与处理、基线估算、自适应滤波算法选择、解缠算法优化及轨道精炼中GCP点的应用,确保终获得高精度的地表形变信息。同时提供了常见问题的解决方案与实用技巧,增强了流程的可操作性可靠性。; 适合人群:具备遥感与GIS基础知识,熟悉ENVI/SARscape软件操作,从事地质灾害监测、地表形变分析等相关领域的科研人员与技术人员;适合研究生及以上学历或具有相关项目经验的专业人员; 使用场景及目标:①掌握DInSAR技术全流程处理方法,用于地表沉降、地震形变、滑坡等地质灾害监测;②提升对InSAR数据处理中关键技术环节(如相位解缠、轨道精炼)的理解与实操能力;③实现高精度形变图的生成与Google Earth可视化表达; 阅读建议:建议结合实际数据边学边练,重点关注各步骤间的逻辑衔接与参数设置依据,遇到DEM下载失败等问题时可参照文中提供的多种替代方案(如手动下载SRTM切片),并对关键结果(如相干性图、解缠图)进行质量检查以确保处理精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值