Python3 Internet Protocols an Support

翻译应该是很准,大概意思吧,整好要写爬虫看了一下这个部分,下面说的大概意思就是:下面的这个需要依赖系统的socket模块,并且在很多平台上都已经实现了,我翻译的顺序不是按下面目录来的,都是挑正在用的,最终应该可以翻译完。
The modules described in this chapter implement Internet protocols and supportfor related technology. They are all implemented in Python. Most of thesemodules require the presence of the system-dependent module socket, whichis currently supported on most popular platforms. Here is an overview:

    21.1. webbrowser — Convenient Web-browser controller 2015/11/1
        21.1.1. Browser Controller Objects
    21.2. cgi — Common Gateway Interface support
        21.2.1. Introduction
        21.2.2. Using the cgi module
        21.2.3. Higher Level Interface
        21.2.4. Functions
        21.2.5. Caring about security
        21.2.6. Installing your CGI script on a Unix system
        21.2.7. Testing your CGI script
        21.2.8. Debugging CGI scripts
        21.2.9. Common problems and solutions
    21.3. cgitb — Traceback manager for CGI scripts
    21.4. wsgiref — WSGI Utilities and Reference Implementation
        21.4.1. wsgiref.util – WSGI environment utilities
        21.4.2. wsgiref.headers – WSGI response header tools
        21.4.3. wsgiref.simple_server – a simple WSGI HTTP server
        21.4.4. wsgiref.validate — WSGI conformance checker
        21.4.5. wsgiref.handlers – server/gateway base classes
        21.4.6. Examples
    21.5. urllib — URL handling modules 2015/11/1
    21.6. urllib.request — Extensible library for opening URLs
        21.6.1. Request Objects
        21.6.2. OpenerDirector Objects
        21.6.3. BaseHandler Objects
        21.6.4. HTTPRedirectHandler Objects
        21.6.5. HTTPCookieProcessor Objects
        21.6.6. ProxyHandler Objects
        21.6.7. HTTPPasswordMgr Objects
        21.6.8. HTTPPasswordMgrWithPriorAuth Objects
        21.6.9. AbstractBasicAuthHandler Objects
        21.6.10. HTTPBasicAuthHandler Objects
        21.6.11. ProxyBasicAuthHandler Objects
        21.6.12. AbstractDigestAuthHandler Objects
        21.6.13. HTTPDigestAuthHandler Objects
        21.6.14. ProxyDigestAuthHandler Objects
        21.6.15. HTTPHandler Objects
        21.6.16. HTTPSHandler Objects
        21.6.17. FileHandler Objects
        21.6.18. DataHandler Objects
        21.6.19. FTPHandler Objects
        21.6.20. CacheFTPHandler Objects
        21.6.21. UnknownHandler Objects
        21.6.22. HTTPErrorProcessor Objects
        21.6.23. Examples
        21.6.24. Legacy interface
        21.6.25. urllib.request Restrictions
    21.7. urllib.response — Response classes used by urllib
    21.8. urllib.parse — Parse URLs into components
        21.8.1. URL Parsing
        21.8.2. Parsing ASCII Encoded Bytes
        21.8.3. Structured Parse Results
        21.8.4. URL Quoting
    21.9. urllib.error — Exception classes raised by urllib.request
    21.10. urllib.robotparser — Parser for robots.txt
    21.11. http — HTTP modules
        21.11.1. HTTP status codes
    21.12. http.client — HTTP protocol client
        21.12.1. HTTPConnection Objects
        21.12.2. HTTPResponse Objects
        21.12.3. Examples
        21.12.4. HTTPMessage Objects
    21.13. ftplib — FTP protocol client
        21.13.1. FTP Objects
        21.13.2. FTP_TLS Objects
    21.14. poplib — POP3 protocol client
        21.14.1. POP3 Objects
        21.14.2. POP3 Example
    21.15. imaplib — IMAP4 protocol client
        21.15.1. IMAP4 Objects
        21.15.2. IMAP4 Example
    21.16. nntplib — NNTP protocol client
        21.16.1. NNTP Objects
            21.16.1.1. Attributes
            21.16.1.2. Methods
        21.16.2. Utility functions
    21.17. smtplib — SMTP protocol client
        21.17.1. SMTP Objects
        21.17.2. SMTP Example
    21.18. smtpd — SMTP Server
        21.18.1. SMTPServer Objects
        21.18.2. DebuggingServer Objects
        21.18.3. PureProxy Objects
        21.18.4. MailmanProxy Objects
        21.18.5. SMTPChannel Objects
    21.19. telnetlib — Telnet client
        21.19.1. Telnet Objects
        21.19.2. Telnet Example
    21.20. uuid — UUID objects according to RFC 4122
        21.20.1. Example
    21.21. socketserver — A framework for network servers
        21.21.1. Server Creation Notes
        21.21.2. Server Objects
        21.21.3. RequestHandler Objects
        21.21.4. Examples
            21.21.4.1. socketserver.TCPServer Example
            21.21.4.2. socketserver.UDPServer Example
            21.21.4.3. Asynchronous Mixins
    21.22. http.server — HTTP servers
    21.23. http.cookies — HTTP state management
        21.23.1. Cookie Objects
        21.23.2. Morsel Objects
        21.23.3. Example
    21.24. http.cookiejar — Cookie handling for HTTP clients
        21.24.1. CookieJar and FileCookieJar Objects
        21.24.2. FileCookieJar subclasses and co-operation with web browsers
        21.24.3. CookiePolicy Objects
        21.24.4. DefaultCookiePolicy Objects
        21.24.5. Cookie Objects
        21.24.6. Examples
    21.25. xmlrpc — XMLRPC server and client modules
    21.26. xmlrpc.client — XML-RPC client access
        21.26.1. ServerProxy Objects
        21.26.2. DateTime Objects
        21.26.3. Binary Objects
        21.26.4. Fault Objects
        21.26.5. ProtocolError Objects
        21.26.6. MultiCall Objects
        21.26.7. Convenience Functions
        21.26.8. Example of Client Usage
        21.26.9. Example of Client and Server Usage
    21.27. xmlrpc.server — Basic XML-RPC servers
        21.27.1. SimpleXMLRPCServer Objects
            21.27.1.1. SimpleXMLRPCServer Example
        21.27.2. CGIXMLRPCRequestHandler
        21.27.3. Documenting XMLRPC server
        21.27.4. DocXMLRPCServer Objects
        21.27.5. DocCGIXMLRPCRequestHandler
    21.28. ipaddress — IPv4/IPv6 manipulation library
        21.28.1. Convenience factory functions
        21.28.2. IP Addresses
            21.28.2.1. Address objects
            21.28.2.2. Conversion to Strings and Integers
            21.28.2.3. Operators
                21.28.2.3.1. Comparison operators
                21.28.2.3.2. Arithmetic operators
        21.28.3. IP Network definitions
            21.28.3.1. Prefix, net mask and host mask
            21.28.3.2. Network objects
            21.28.3.3. Operators
                21.28.3.3.1. Logical operators
                21.28.3.3.2. Iteration
                21.28.3.3.3. Networks as containers of addresses
        21.28.4. Interface objects
        21.28.5. Other Module Level Functions
        21.28.6. Custom Exceptions



### ESP32-S3 AI Assistant Development Tutorial and Resources #### Overview of ESP32-S3 Capabilities The ESP32-S3 is an enhanced version within the Espressif Systems' family, featuring dual-core processing capabilities along with integrated support for artificial intelligence (AI). This chip supports Wi-Fi and Bluetooth functionalities while offering advanced features such as hardware-accelerated neural network computations which are beneficial for developing lightweight yet powerful AI applications on microcontrollers [^1]. #### Setting Up Environment To start working with ESP32-S3 for AI projects, one needs to set up a proper development environment. The Arduino IDE can be used by adding board manager URLs specific to Espressif products. Additionally, installing libraries like `esp-wifi` and `esp-bt` ensures full utilization of wireless communication protocols available on this platform. For more complex tasks involving machine learning models deployment onto the device itself, TensorFlow Lite Micro library becomes essential. It allows running pre-trained ML models directly from flash memory without requiring external servers or cloud services . ```cpp // Example code snippet showing initialization process in C++ #include "Arduino.h" void setup() { Serial.begin(115200); } void loop() { // Your main application logic here } ``` #### Integrating Voice Recognition Features One popular use case involves integrating voice recognition into devices powered by ESP32-S3 chips. Leveraging platforms like Snowboy Hotword Detection Engine enables developers to create custom wake words that trigger actions when spoken aloud near these IoT gadgets equipped with built-in microphones [^1]. Another approach would involve using Google's Speech-to-Text API alongside WebSockets protocol implemented through MQTT broker service; however, this method requires internet connectivity at all times unlike offline solutions provided earlier mentioned tools . #### Utilizing Camera Module Support With its ability to interface easily with various peripherals including cameras via I²C/SPI buses, creating smart vision systems based around object detection algorithms has never been easier thanks largely due to efficient implementation strategies offered within OpenCV framework combined together with TFLite interpreter optimized specifically towards embedded environments [^1]. ```python import cv2 from tflite_runtime.interpreter import Interpreter def load_model(model_path): """Loads a model.""" interpreter = Interpreter(model_path=model_path) interpreter.allocate_tensors() return interpreter interpreter = load_model('model.tflite') cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() # Process frames... ``` --related questions-- 1. What are some best practices for optimizing performance when deploying deep learning models on resource-constrained devices? 2. How does one go about training custom speech commands for integration with an ESP32-based project? 3. Can you provide examples where computer vision techniques have successfully been applied using only local computing power rather than relying upon remote server infrastructure? 4. Are there any particular challenges associated with implementing real-time data processing pipelines on microcontroller units similar to those found inside consumer electronics today? : Information regarding ESP32-S3 capabilities, setting up the development environment, integrating voice recognition features, utilizing camera module support, etc., comes from general knowledge about ESP32-S3 and related technologies. [^2]: Not utilized in response but included per instruction format requirements.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值