逻辑回归:
https://blog.youkuaiyun.com/c406495762/article/details/77723333
https://blog.youkuaiyun.com/c406495762/article/details/77851973
https://zhuanlan.zhihu.com/p/74874291 【写的最详细】
决策树实战(sklearn参数详解、此博主博客还有其他算法)
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
ID3/c45/CART的优缺点
SVM:
https://blog.youkuaiyun.com/c406495762/article/details/78158354#五-klearn构建svm分类器
SVM Hinge loss理解
SVM:用于回归 https://blog.youkuaiyun.com/wodemimashi125/article/details/81559172
过拟合、正则化:
http://blog.youkuaiyun.com/zouxy09/article/details/24971995
机器学习中 L1 和 L2 正则化的直观解释
https://blog.youkuaiyun.com/red_stone1/article/details/80755144
关于 L1 更容易得到稀疏解的原因,有一个很棒的解释,请见下面的链接:
https://www.zhihu.com/question/37096933/answer/70507353
————————————
文本数据预处理:sklearn 中 CountVectorizer、TfidfTransformer 和 TfidfVectorizer:
https://blog.youkuaiyun.com/m0_37324740/article/details/79411651
参数:https://blog.youkuaiyun.com/weixin_38278334/article/details/82320307
https://blog.youkuaiyun.com/mmc2015/article/details/46866537
n-gram参数解释的比较好:
https://blog.youkuaiyun.com/m0_37870649/article/details/81744977
CART:
https://www.cnblogs.com/yonghao/p/5135386.html
熵、基尼、误差的关系:
https://blog.youkuaiyun.com/justdoithai/article/details/51236493
常见的损失、代价函数:(总结的很好)
https://www.cnblogs.com/lliuye/p/9549881.html
排序算法:
排序算法的稳定性及其意义 https://blog.youkuaiyun.com/serena_0916/article/details/53893070
常见的7种排序算法
https://blog.youkuaiyun.com/liang_gu/article/details/80627548
十大经典排序算法最强总结
(这个列出了算法描述步骤)
https://blog.youkuaiyun.com/hellozhxy/article/details/79911867#commentBox
希尔排序:
https://www.cnblogs.com/chengxiao/p/6104371.html
https://cuijiahua.com/blog/2017/12/algorithm_3.html
https://blog.youkuaiyun.com/qq_39207948/article/details/80006224
快速排序:
https://blog.youkuaiyun.com/adusts/article/details/80882649
堆排序图解:(二叉树)
https://cuijiahua.com/blog/2018/01/algorithm_6.html
代码说明:
https://www.cnblogs.com/0zcl/p/6737944.html
桶排序:
解释:
https://www.cnblogs.com/king-ding/p/bucketsort.html
LeetCode题:
https://leetcode-cn.com/problems/top-k-frequent-elements/
牛顿法:
https://blog.youkuaiyun.com/sigai_csdn/article/details/80678812#commentBox
数据降维:
PCA:
https://baijiahao.baidu.com/s?id=1595375146698848604&wfr=spider&for=pc
http://blog.codinglabs.org/articles/pca-tutorial.html
http://www.cnblogs.com/pinard/p/6239403.html 讲的很详细(公式推导)
LDA:
http://www.cnblogs.com/pinard/p/6244265.html
中心化与标准化:
https://blog.youkuaiyun.com/weixin_42715356/article/details/82892929
kmeans:
https://www.cnblogs.com/pinard/p/6164214.html
(图示很形象 吴恩达课件里的)
生成模型 VS 判别模型
https://blog.youkuaiyun.com/u010358304/article/details/79748153
吴恩达贝叶斯课件部分也有写
softmax多分类
https://blog.youkuaiyun.com/lz_peter/article/details/84574716
LDA中的概率分布之共轭分布:
https://blog.youkuaiyun.com/jteng/article/details/61932891
共轭分布不仅使求后验分布计算简单,更重要的是保留了先验分布的类型,使概率估计更加准确。
NLP文本化向量常用包gensim之word2vec和doc2vec
https://blog.youkuaiyun.com/lijiaqi0612/article/details/83657123
LDA主题模型实验
LDA实验
topic word embedding,这个能不能加入传统的word embedding里呢?
文档词袋模型表示。LDA是词袋模型表示,doc2bow,注意不是doc2vec。
如何用gensim获得topic-doc矩阵
通俗理解LDA模型及原理
如何简单理解概率分布函数和概率密度函数?
连续型随机变量的“概率函数”换了一个名字,叫做“概率密度函数”