- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
我的环境:
- 语言环境:Python3.12
- 编译器:PyCharm
- 深度学习环境:
-
- torch==1.12.1+cu113
- torchvision==0.13.1+cu113
一、实验
1、目的:
学会构建CNN网络
2、总结:
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

关于卷积层、池化层的计算:
下面的网络数据shape变化过程为:
3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512 -> 256 -> num_classes(10)
网络结构图(可单击放大查看):

3、手动推导卷积层与池化层的计算过程
>> 3 32 32
输入矩阵:32*32
输入通道:3
卷积核:3
步长:默认1
填充大小:默认0
第1步骤:卷积
nn.Conv2d(3, 64, kernel_size=3) # 第一层卷积,卷积核大小为3*3
公式:
输出矩阵 =(输入矩阵-卷积核+2*填充大小)/步长 +1
计算:
输出矩阵 =(32-3+2*0)/1 + 1 = 30
>>64 30 30
第2步骤:池化
nn.MaxPool2d(kernel_size=2) # 设置池化层,池化核大小为2*2
输出高 =((输入高 +2*padding0 - dilation0*(池化核0-1) -1 )/ 池化核0 + 1
输出宽 =((输入宽 +2*padding1 - dilation1*(池化核1-1) -1 )/ 池化核1 + 1
输出高 =(30+2*0-1*(2-1)- 1)/2 + 1 = 15
输出宽 =(30+2*0-1*(2-1)- 1)/2 + 1 = 15
>> 64 15 15
第3步骤:卷积
nn.Conv2d(64, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
计算:
输出矩阵 =(15-3+2*0)/1 + 1 = 13
>>64 13 13
第4步骤:池化
nn.MaxPool2d(kernel_size=2) # 第二层池化,池化核大小为2*2
计算:
输出高 =(13+2*0-1*(2-1)- 1)/2 + 1 = 6.5 =》 6
>>64 6 6
第5步骤:卷积
nn.Conv2d(64, 128, kernel_size=3) # 第三层卷积,卷积核大小为3*3
计算:
输出矩阵 =(6-3+2*0)/1 + 1 = 4
>>128 4 4
第6步骤:池化
nn.MaxPool2d(kernel_size=2) # 第三层池化,池化核大小为2*2
计算:
输出高 =(4+2*0-1*(2-1)- 1)/2 + 1 = 2
>>128 2 2
问题1:“self.fc1 = nn.Linear(512, 256) ”中的512是怎么算出来的
回答1:这是Flatten层作用的结果,128*2*2=512。
疑问:
256是怎么算出来的?
4、结果:


D:\PycharmProjects\pythonProject\.venv\Scripts\python.exe D:\PycharmProjects\pythonProject\P2\main.py
cpu
torch.Size([32, 3, 32, 32])
=================================================================
Layer (type:depth-idx) Param #
=================================================================
Model --
├─Conv2d: 1-1 1,792
├─MaxPool2d: 1-2 --
├─Conv2d: 1-3 36,928
├─MaxPool2d: 1-4 --
├─Conv2d: 1-5 73,856
├─MaxPool2d: 1-6 --
├─Linear: 1-7 131,328
├─Linear: 1-8 2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================
Epoch: 1, Train_acc:11.9%, Train_loss:2.295, Test_acc:19.4%,Test_loss:2.265
Epoch: 2, Train_acc:22.9%, Train_loss:2.079, Test_acc:26.2%,Test_loss:2.004
Epoch: 3, Train_acc:31.1%, Train_loss:1.879, Test_acc:36.8%,Test_loss:1.740
Epoch: 4, Train_acc:38.9%, Train_loss:1.680, Test_acc:40.8%,Test_loss:1.612
Epoch: 5, Train_acc:43.7%, Train_loss:1.551, Test_acc:44.8%,Test_loss:1.502
Epoch: 6, Train_acc:47.5%, Train_loss:1.451, Test_acc:49.0%,Test_loss:1.413
Epoch: 7, Train_acc:50.9%, Train_loss:1.367, Test_acc:49.0%,Test_loss:1.432
Epoch: 8, Train_acc:53.8%, Train_loss:1.292, Test_acc:54.5%,Test_loss:1.298
Epoch: 9, Train_acc:56.4%, Train_loss:1.227, Test_acc:54.7%,Test_loss:1.259
Epoch:10, Train_acc:58.7%, Train_loss:1.167, Test_acc:57.6%,Test_loss:1.215
Done
进程已结束,退出代码为 0
二、源代码
#一、 前期准备
#1、设置GPU
#如果设备上支持GPU就使用GPU,否则使用CPU
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
#2. 导入数据
train_ds = torchvision.datasets.CIFAR10('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
test_ds = torchvision.datasets.CIFAR10('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
print(imgs.shape)
#3. 数据可视化
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
# 进行轴变换
npimg = imgs.numpy().transpose((1, 2, 0))
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i + 1)
plt.imshow(npimg, cmap=plt.cm.binary)
plt.axis('off')
plt.show()
#二、构建简单的CNN网络
import torch.nn.functional as F
num_classes = 10 # 图片的类别数
class Model(nn.Module):
def __init__(self):
super().__init__()
# 特征提取网络
self.conv1 = nn.Conv2d(3, 64, kernel_size=3) # 第一层卷积,卷积核大小为3*3
self.pool1 = nn.MaxPool2d(kernel_size=2) # 设置池化层,池化核大小为2*2
self.conv2 = nn.Conv2d(64, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool3 = nn.MaxPool2d(kernel_size=2)
# 分类网络
self.fc1 = nn.Linear(512, 256)
self.fc2 = nn.Linear(256, num_classes)
# 前向传播
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
#加载并打印模型
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)
summary(model)
#三、 训练模型
#1. 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
#2. 编写训练函数
#参数更新示例
#param.data = param.data - learning_rate * param.grad
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
#3. 编写测试函数
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
#4. 正式训练
epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')
#四、 结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
from datetime import datetime
current_time = datetime.now() # 获取当前时间
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
1334

被折叠的 条评论
为什么被折叠?



